Higher AMPK activation in mouse oxidative compared with glycolytic muscle does not correlate with LKB1 or CaMKKβ expression.

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Romain Bernasconi, Kärol Soodla, Alex Sirp, Kairit Zovo, Maria Kuhtinskaja, Tiit Lukk, Marko Vendelin, Rikke Birkedal
{"title":"Higher AMPK activation in mouse oxidative compared with glycolytic muscle does not correlate with LKB1 or CaMKKβ expression.","authors":"Romain Bernasconi, Kärol Soodla, Alex Sirp, Kairit Zovo, Maria Kuhtinskaja, Tiit Lukk, Marko Vendelin, Rikke Birkedal","doi":"10.1152/ajpendo.00261.2024","DOIUrl":null,"url":null,"abstract":"<p><p>AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine kinase involved in metabolic regulation. It is phosphorylated by the upstream liver kinase B1 (LKB1) or calcium/calmodulin-dependent kinase kinase 2 (CaMKKβ). In cultured cells, AMPK activation correlates with LKB1 activity. The phosphorylation activates AMPK, shifting metabolism toward catabolism and promoting mitogenesis. In muscles, inactivity reduces AMPK activation, shifting the phenotype of oxidative muscles toward a more glycolytic profile. Here, we compared the basal level of AMPK activation in glycolytic and oxidative muscles and analyzed whether this relates to LKB1 or CaMKKβ. Using Western blotting, we assessed AMPK expression and phosphorylation in soleus, gastrocnemius (GAST), extensor digitorum longus (EDL), and heart from C57BL6J mice. We also assessed LKB1 and CaMKKβ expression, and CaMKKβ activity in tissue homogenates. AMPK activation was higher in oxidative (soleus and heart) than in glycolytic muscles (gastrocnemius and EDL). This correlated with AMPK α1-isoform expression, but not LKB1 and CaMKKβ. LKB1 expression was sex dependent and lower in male than female muscles. CaMKKβ expression was very low in skeletal muscles and did not phosphorylate AMPK in muscle lysates. The higher AMPK activation in oxidative muscles is in line with the fact that activated AMPK maintains an oxidative phenotype. However, this could not be explained by LKB1 and CaMKKβ. These results suggest that the regulation of AMPK activation is more complex in muscle than in cultured cells. As AMPK has been proposed as a therapeutic target for several diseases, future research should consider AMPK isoform expression and localization, and energetic compartmentalization.<b>NEW & NOTEWORTHY</b> It is important to understand how AMP-activated kinase, AMPK, is regulated, as it is a potential therapeutic target for several diseases. AMPK is activated by liver kinase B1, LKB1, and calcium/calmodulin-dependent kinase kinase 2, CaMKKβ. In cultured cells, AMPK activation correlates with LKB1 expression. In contrast, we show that AMPK-activation was higher in oxidative than glycolytic muscle, without correlating with LKB1 or CaMKKβ expression. Thus, AMPK regulation is more complex in highly compartmentalized muscle cells.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E21-E33"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00261.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine kinase involved in metabolic regulation. It is phosphorylated by the upstream liver kinase B1 (LKB1) or calcium/calmodulin-dependent kinase kinase 2 (CaMKKβ). In cultured cells, AMPK activation correlates with LKB1 activity. The phosphorylation activates AMPK, shifting metabolism toward catabolism and promoting mitogenesis. In muscles, inactivity reduces AMPK activation, shifting the phenotype of oxidative muscles toward a more glycolytic profile. Here, we compared the basal level of AMPK activation in glycolytic and oxidative muscles and analyzed whether this relates to LKB1 or CaMKKβ. Using Western blotting, we assessed AMPK expression and phosphorylation in soleus, gastrocnemius (GAST), extensor digitorum longus (EDL), and heart from C57BL6J mice. We also assessed LKB1 and CaMKKβ expression, and CaMKKβ activity in tissue homogenates. AMPK activation was higher in oxidative (soleus and heart) than in glycolytic muscles (gastrocnemius and EDL). This correlated with AMPK α1-isoform expression, but not LKB1 and CaMKKβ. LKB1 expression was sex dependent and lower in male than female muscles. CaMKKβ expression was very low in skeletal muscles and did not phosphorylate AMPK in muscle lysates. The higher AMPK activation in oxidative muscles is in line with the fact that activated AMPK maintains an oxidative phenotype. However, this could not be explained by LKB1 and CaMKKβ. These results suggest that the regulation of AMPK activation is more complex in muscle than in cultured cells. As AMPK has been proposed as a therapeutic target for several diseases, future research should consider AMPK isoform expression and localization, and energetic compartmentalization.NEW & NOTEWORTHY It is important to understand how AMP-activated kinase, AMPK, is regulated, as it is a potential therapeutic target for several diseases. AMPK is activated by liver kinase B1, LKB1, and calcium/calmodulin-dependent kinase kinase 2, CaMKKβ. In cultured cells, AMPK activation correlates with LKB1 expression. In contrast, we show that AMPK-activation was higher in oxidative than glycolytic muscle, without correlating with LKB1 or CaMKKβ expression. Thus, AMPK regulation is more complex in highly compartmentalized muscle cells.

与糖酵解肌相比,小鼠氧化肌中更高的 AMPK 激活与 LKB1 或 CaMKKβ 的表达无关。
AMP激活蛋白激酶(AMPK)是一种能量感应丝氨酸/苏氨酸激酶,参与代谢调节。它被上游肝脏激酶 B1(LKB1)或钙/钙调蛋白依赖性激酶激酶 2(CaMKKβ)磷酸化。在培养细胞中,AMPK 的活化与 LKB1 的活性相关。磷酸化激活了 AMPK,使新陈代谢转向分解代谢并促进有丝分裂。在肌肉中,不活动会减少 AMPK 的激活,使氧化肌肉的表型转向更多的糖酵解。在这里,我们比较了糖酵解肌肉和氧化肌肉中 AMPK 激活的基础水平,以及这是否与 LKB1 或 CaMKKβ 有关。我们使用 Western 印迹法评估了 C57BL6J 小鼠比目鱼肌、腓肠肌、伸肌(EDL)和心脏中 AMPK 的表达和磷酸化情况。我们还评估了组织匀浆中 LKB1 和 CaMKKβ 的表达以及 CaMKKβ 的活性。氧化肌(比目鱼肌和心脏)的 AMPK 激活程度高于糖酵解肌(腓肠肌和 EDL)。这与 AMPK α1-异构体的表达相关,但与 LKB1 和 CaMKKβ 的表达无关。LKB1 的表达与性别有关,男性肌肉的表达低于女性肌肉。CaMKKβ在骨骼肌中的表达量很低,在肌肉裂解液中不会使AMPK磷酸化。氧化肌肉中 AMPK 的活化程度较高,这与活化的 AMPK 可维持氧化表型的事实相符。然而,LKB1 和 CaMKKβ 无法解释这一点。这些结果表明,肌肉中 AMPK 的激活调控比培养细胞中更为复杂。由于 AMPK 已被提出作为多种疾病的治疗靶点,未来的研究应考虑 AMPK 同工酶的表达和定位以及能量分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
0.00%
发文量
98
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信