{"title":"Stabilization Mechanism of Initiator Transfer RNA in the Small Ribosomal Subunit from Coarse-Grained Molecular Simulations.","authors":"Yoshiharu Mori, Shigenori Tanaka","doi":"10.1021/acs.jpcb.4c04966","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins play a variety of roles in biological phenomena in cells. Proteins are synthesized by the ribosome, which is a large molecular complex composed of proteins and nucleic acids. Among the many molecules involved in the process of protein synthesis, tRNA is one of the essential molecules. In this study, coarse-grained molecular dynamics simulations were performed to understand how the tRNA molecule is stabilized in the ribosome, and the free energy along the dissociation path of the tRNA was calculated. We found that some ribosomal proteins, which are components of the ribosome, are involved in the stabilization of the tRNA. The positively charged amino acid residues in the C-terminal region of the ribosomal proteins are particularly important for stabilization. These findings contribute to our understanding of the molecular evolution of protein synthesis in terms of the ribosome, which is a universal component of life.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"12059-12065"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c04966","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Proteins play a variety of roles in biological phenomena in cells. Proteins are synthesized by the ribosome, which is a large molecular complex composed of proteins and nucleic acids. Among the many molecules involved in the process of protein synthesis, tRNA is one of the essential molecules. In this study, coarse-grained molecular dynamics simulations were performed to understand how the tRNA molecule is stabilized in the ribosome, and the free energy along the dissociation path of the tRNA was calculated. We found that some ribosomal proteins, which are components of the ribosome, are involved in the stabilization of the tRNA. The positively charged amino acid residues in the C-terminal region of the ribosomal proteins are particularly important for stabilization. These findings contribute to our understanding of the molecular evolution of protein synthesis in terms of the ribosome, which is a universal component of life.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.