The Sine–Gordon QFT in de Sitter spacetime

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Daniela Cadamuro, Markus B. Fröb, Carolina Moreira Ferrera
{"title":"The Sine–Gordon QFT in de Sitter spacetime","authors":"Daniela Cadamuro,&nbsp;Markus B. Fröb,&nbsp;Carolina Moreira Ferrera","doi":"10.1007/s11005-024-01882-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the massless Sine–Gordon model in de Sitter spacetime, in the regime <span>\\(\\beta ^2 &lt; 4 \\pi \\)</span> and using the framework of perturbative algebraic quantum field theory. We show that a Fock space representation exists for the free massless field, but that the natural one-parameter family of vacuum-like states breaks the de Sitter boost symmetries. We prove convergence of the perturbative series for the S matrix in this representation and construct the interacting Haag–Kastler net of local algebras from the relative S matrices. We show that the net fulfills isotony, locality and de Sitter covariance (in the algebraic adiabatic limit), even though the states that we consider are not invariant. We furthermore prove convergence of the perturbative series for the interacting field and the vertex operators, and verify that the interacting equation of motion holds.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01882-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01882-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the massless Sine–Gordon model in de Sitter spacetime, in the regime \(\beta ^2 < 4 \pi \) and using the framework of perturbative algebraic quantum field theory. We show that a Fock space representation exists for the free massless field, but that the natural one-parameter family of vacuum-like states breaks the de Sitter boost symmetries. We prove convergence of the perturbative series for the S matrix in this representation and construct the interacting Haag–Kastler net of local algebras from the relative S matrices. We show that the net fulfills isotony, locality and de Sitter covariance (in the algebraic adiabatic limit), even though the states that we consider are not invariant. We furthermore prove convergence of the perturbative series for the interacting field and the vertex operators, and verify that the interacting equation of motion holds.

德西特时空中的辛-戈登 QFT
我们在 \(\beta ^2 < 4 \pi \)制度下,利用微扰代数量子场论框架,考虑了德西特时空中的无质量辛-戈登模型。我们证明自由无质量场存在一个福克空间表示,但类似真空态的自然一参数族打破了德西特提升对称性。我们证明了该表示中 S 矩阵的微扰序列的收敛性,并从相对 S 矩阵构建了局部代数的相互作用哈格-卡斯勒网。我们证明,即使我们考虑的状态不是不变的,该网也满足等位性、局域性和德西特协方差(在代数绝热极限中)。我们还进一步证明了相互作用场和顶点算子的微扰序列的收敛性,并验证了相互作用运动方程的成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信