Mustafa Karanfіl, Nurcan Doğan, Yasin Akgul, Cemhan Doğan, Salih Birhanu Ahmed
{"title":"Mushrooms for Mushrooms: A Bio-Based Approach to Active Food Packaging","authors":"Mustafa Karanfіl, Nurcan Doğan, Yasin Akgul, Cemhan Doğan, Salih Birhanu Ahmed","doi":"10.1007/s11483-024-09913-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, carbon dots (CDs) were synthesized from Pleurotus ostreatus liquid culture and incorporated into polyvinyl alcohol (PVA) and chitosan (Chi) nanofibers, fabricated via the electroblowing technique to create an active packaging material. TEM analysis confirmed that the synthesized CDs possessed uniform size and morphology, while UV-Vis spectroscopy validated their optical properties. SEM imaging revealed that the electroblown nanofibers had a smooth surface morphology and uniform distribution of CDs within the PVA-Chi matrix. The nanofibers also exhibited enhanced thermal stability, as determined by thermogravimetric analysis (TGA). The developed CD-PVA-Chi nanofiber packaging was applied to oyster mushrooms, where it significantly reduced weight loss by over 50%, inhibited microbial growth by approximately 60%, and preserved 80% of the mushrooms’ firmness over a 6-day storage period compared to control packaging. The cytotoxicity tests confirmed that the packaging material was non-toxic, making it safe for food contact applications. This study demonstrates that the CD-PVA-Chi nanofiber packaging is a promising, eco-friendly alternative to conventional packaging materials, with potential for extending the shelf life of perishable foods through its bioactive properties and scalability for industrial production.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09913-y","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, carbon dots (CDs) were synthesized from Pleurotus ostreatus liquid culture and incorporated into polyvinyl alcohol (PVA) and chitosan (Chi) nanofibers, fabricated via the electroblowing technique to create an active packaging material. TEM analysis confirmed that the synthesized CDs possessed uniform size and morphology, while UV-Vis spectroscopy validated their optical properties. SEM imaging revealed that the electroblown nanofibers had a smooth surface morphology and uniform distribution of CDs within the PVA-Chi matrix. The nanofibers also exhibited enhanced thermal stability, as determined by thermogravimetric analysis (TGA). The developed CD-PVA-Chi nanofiber packaging was applied to oyster mushrooms, where it significantly reduced weight loss by over 50%, inhibited microbial growth by approximately 60%, and preserved 80% of the mushrooms’ firmness over a 6-day storage period compared to control packaging. The cytotoxicity tests confirmed that the packaging material was non-toxic, making it safe for food contact applications. This study demonstrates that the CD-PVA-Chi nanofiber packaging is a promising, eco-friendly alternative to conventional packaging materials, with potential for extending the shelf life of perishable foods through its bioactive properties and scalability for industrial production.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.