Atomistic-informed phase field modeling of magnesium twin growth by disconnections

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Hu, Dennis M. Kochmann, Brandon Runnels
{"title":"Atomistic-informed phase field modeling of magnesium twin growth by disconnections","authors":"Yang Hu, Dennis M. Kochmann, Brandon Runnels","doi":"10.1016/j.actamat.2024.120564","DOIUrl":null,"url":null,"abstract":"The nucleation and propagation of disconnections play an essential role during twin growth. Atomistic methods can reveal such small structural features on twin facets and model their motion, yet are limited by the simulation length and time scales. Alternatively, mesoscale modeling approaches (such as the phase field method) address these constraints of atomistic simulations and can maintain atomic-level accuracy when integrated with atomic-level information. In this work, a phase field model is used to simulate the disconnection-mediated twinning, informed by molecular dynamics (MD) simulations. This work considers the specific case of the growth of <span><span style=\"\"><math><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">1</mn><mspace is=\"true\" width=\"0.16667em\"></mspace><mn is=\"true\">0</mn><mspace is=\"true\" width=\"0.16667em\"></mspace><mover accent=\"false\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mo accent=\"true\" is=\"true\">¯</mo></mover><mspace is=\"true\" width=\"0.16667em\"></mspace><mn is=\"true\">2</mn><mo is=\"true\">}</mo></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"4.625ex\" role=\"img\" style=\"vertical-align: -1.735ex;\" viewbox=\"0 -1244 3886.5 1991.2\" width=\"9.027ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use is=\"true\" xlink:href=\"#MJSZ2-7B\"></use><g is=\"true\" transform=\"translate(667,0)\"><use xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(1334,0)\"><use xlink:href=\"#MJMAIN-30\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(2001,0)\"><g is=\"true\" transform=\"translate(24,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(0,483)\"><use transform=\"scale(0.707)\" x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"277\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(2718,0)\"><use xlink:href=\"#MJMAIN-32\"></use></g><use is=\"true\" x=\"3219\" xlink:href=\"#MJSZ2-7D\" y=\"-1\"></use></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">1</mn><mspace width=\"0.16667em\" is=\"true\"></mspace><mn is=\"true\">0</mn><mspace width=\"0.16667em\" is=\"true\"></mspace><mover accent=\"false\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mo accent=\"true\" is=\"true\">¯</mo></mover><mspace width=\"0.16667em\" is=\"true\"></mspace><mn is=\"true\">2</mn><mo is=\"true\">}</mo></mrow></math></script></span> twin in magnesium. MD simulations are first conducted to obtain the orientation-dependent interface mobility and motion threshold, and to simulate twin embryo growth and collect facet velocities, which can be used for calibrating the continuum model. The phase field disconnections model, based on the principle of minimum dissipation potential, provides the theoretical framework. This model incorporates a nonconvex grain boundary energy, elasticity and shear coupling, and simulates disconnections as a natural emergence under the elastic driving force. The phase field model is further optimized by including the anisotropic interface mobility and motion threshold suggested by MD simulations. Results agree with MD simulations of twin embryo growth in the aspects of final twin thickness, twin shape, and twin size, as well as the kinetic behavior of twin boundaries and twin tips. The simulated twin microstructure is also consistent with experimental observations, demonstrating the fidelity of the model.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"70 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120564","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The nucleation and propagation of disconnections play an essential role during twin growth. Atomistic methods can reveal such small structural features on twin facets and model their motion, yet are limited by the simulation length and time scales. Alternatively, mesoscale modeling approaches (such as the phase field method) address these constraints of atomistic simulations and can maintain atomic-level accuracy when integrated with atomic-level information. In this work, a phase field model is used to simulate the disconnection-mediated twinning, informed by molecular dynamics (MD) simulations. This work considers the specific case of the growth of {101¯2} twin in magnesium. MD simulations are first conducted to obtain the orientation-dependent interface mobility and motion threshold, and to simulate twin embryo growth and collect facet velocities, which can be used for calibrating the continuum model. The phase field disconnections model, based on the principle of minimum dissipation potential, provides the theoretical framework. This model incorporates a nonconvex grain boundary energy, elasticity and shear coupling, and simulates disconnections as a natural emergence under the elastic driving force. The phase field model is further optimized by including the anisotropic interface mobility and motion threshold suggested by MD simulations. Results agree with MD simulations of twin embryo growth in the aspects of final twin thickness, twin shape, and twin size, as well as the kinetic behavior of twin boundaries and twin tips. The simulated twin microstructure is also consistent with experimental observations, demonstrating the fidelity of the model.

Abstract Image

通过断开建立镁孪生生长的原子论相场模型
断开的成核和传播在孪晶生长过程中起着至关重要的作用。原子方法可以揭示孪晶切面上的这种微小结构特征,并建立其运动模型,但受到模拟长度和时间尺度的限制。另外,中尺度建模方法(如相场法)可以解决原子模拟的这些限制,并在与原子级信息整合时保持原子级精度。在这项研究中,我们利用相场模型模拟由断开连接介导的孪生现象,并以分子动力学(MD)模拟为基础。这项工作考虑了镁中{101¯2}{101¯2}孪晶生长的具体情况。首先进行了 MD 模拟,以获得与取向相关的界面迁移率和运动阈值,并模拟孪晶胚胎生长和收集切面速度,这些数据可用于校准连续模型。基于最小耗散势原理的相场断开模型提供了理论框架。该模型包含非凸晶界能量、弹性和剪切力耦合,模拟断开是弹性驱动力下自然出现的现象。通过纳入 MD 模拟提出的各向异性界面流动性和运动阈值,进一步优化了相场模型。在最终孪晶厚度、孪晶形状和孪晶尺寸方面,以及孪晶边界和孪晶尖端的动力学行为方面,研究结果与孪晶胚胎生长的 MD 模拟结果一致。模拟的孪晶微观结构也与实验观察结果一致,证明了模型的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信