Predicting deep infection in pilon and tibial plateau fractures: a secondary analysis of the VANCO and OXYGEN trials.

Archie L Overmann, Anthony R Carlini, Robert V O'Toole, Renan C Castillo, Nathan N O'Hara
{"title":"Predicting deep infection in pilon and tibial plateau fractures: a secondary analysis of the VANCO and OXYGEN trials.","authors":"Archie L Overmann, Anthony R Carlini, Robert V O'Toole, Renan C Castillo, Nathan N O'Hara","doi":"10.1097/OI9.0000000000000348","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop and validate a prediction model for a deep surgical site infection (SSI) after fixation of a tibial plateau or pilon fracture.</p><p><strong>Design: </strong>Pooled data from 2 randomized trials (VANCO and OXYGEN).</p><p><strong>Setting: </strong>Fifty-two US trauma centers.</p><p><strong>Patients: </strong>In total, 1847 adult patients with operatively treated tibial plateau or pilon fractures who met criteria for a high risk of infection.</p><p><strong>Intervention: </strong>We considered 13 baseline patient characteristics and developed and externally validated prediction models using 3 approaches (logistic regression, stepwise elimination, and machine learning).</p><p><strong>Main outcomes and measures: </strong>The primary prediction model outcome was a deep SSI requiring operative debridement within 182 days of definitive fixation. Our primary prognostic performance metric for evaluating the models was area under the receiver operating characteristic curve (AUC) with clinical utility set at 0.7.</p><p><strong>Results: </strong>Deep SSI occurred in 75 VANCO patients (8%) and in 56 OXYGEN patients (6%). The machine learning model for VANCO (AUC = 0.65) and stepwise elimination model for OXYGEN (AUC = 0.62) had the highest internal validation AUCs. However, none of the external validation AUCs exceeded 0.64 (range, 0.58 to 0.64).</p><p><strong>Conclusions: </strong>The predictive models did not reach the prespecified clinical utility threshold. Our models' inability to distinguish high-risk from low-risk patients is likely due to strict eligibility criteria and, therefore, homogeneous patient populations.</p>","PeriodicalId":74381,"journal":{"name":"OTA international : the open access journal of orthopaedic trauma","volume":"7 4","pages":"e348"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OTA international : the open access journal of orthopaedic trauma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/OI9.0000000000000348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To develop and validate a prediction model for a deep surgical site infection (SSI) after fixation of a tibial plateau or pilon fracture.

Design: Pooled data from 2 randomized trials (VANCO and OXYGEN).

Setting: Fifty-two US trauma centers.

Patients: In total, 1847 adult patients with operatively treated tibial plateau or pilon fractures who met criteria for a high risk of infection.

Intervention: We considered 13 baseline patient characteristics and developed and externally validated prediction models using 3 approaches (logistic regression, stepwise elimination, and machine learning).

Main outcomes and measures: The primary prediction model outcome was a deep SSI requiring operative debridement within 182 days of definitive fixation. Our primary prognostic performance metric for evaluating the models was area under the receiver operating characteristic curve (AUC) with clinical utility set at 0.7.

Results: Deep SSI occurred in 75 VANCO patients (8%) and in 56 OXYGEN patients (6%). The machine learning model for VANCO (AUC = 0.65) and stepwise elimination model for OXYGEN (AUC = 0.62) had the highest internal validation AUCs. However, none of the external validation AUCs exceeded 0.64 (range, 0.58 to 0.64).

Conclusions: The predictive models did not reach the prespecified clinical utility threshold. Our models' inability to distinguish high-risk from low-risk patients is likely due to strict eligibility criteria and, therefore, homogeneous patient populations.

皮隆和胫骨平台骨折深度感染的预测:对 VANCO 和 OXYGEN 试验的二次分析。
目的开发并验证胫骨平台或皮隆骨折固定后深部手术部位感染(SSI)的预测模型:设计:汇总两项随机试验(VANCO 和 OXYGEN)的数据:52家美国创伤中心:共有 1847 名成年患者接受了胫骨平台或皮隆骨折的手术治疗,并符合高感染风险标准:我们考虑了患者的 13 项基线特征,并使用 3 种方法(逻辑回归、逐步排除和机器学习)开发了预测模型,并进行了外部验证:主要预测结果:模型的主要预测结果是在最终固定后 182 天内出现需要手术清创的深部 SSI。我们评估模型的主要预后性能指标是接收者操作特征曲线下面积(AUC),临床效用设定为 0.7:75 名 VANCO 患者(8%)和 56 名 OXYGEN 患者(6%)发生了深度 SSI。VANCO 的机器学习模型(AUC = 0.65)和 OXYGEN 的逐步消除模型(AUC = 0.62)的内部验证 AUC 最高。然而,没有一个外部验证 AUC 超过 0.64(范围为 0.58 至 0.64):结论:预测模型没有达到预设的临床效用阈值。我们的模型无法区分高风险和低风险患者,这可能是由于严格的资格标准,因此患者群体是同质的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信