Timothy Páez-Watson, Ricardo Hernández Medina, Loek Vellekoop, Mark C M van Loosdrecht, S Aljoscha Wahl
{"title":"Conditional flux balance analysis toolbox for python: application to research metabolism in cyclic environments.","authors":"Timothy Páez-Watson, Ricardo Hernández Medina, Loek Vellekoop, Mark C M van Loosdrecht, S Aljoscha Wahl","doi":"10.1093/bioadv/vbae174","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>We present py_cFBA, a Python-based toolbox for conditional flux balance analysis (cFBA). Our toolbox allows for an easy implementation of cFBA models using a well-documented and modular approach and supports the generation of Systems Biology Markup Language models. The toolbox is designed to be user-friendly, versatile, and freely available to non-commercial users, serving as a valuable resource for researchers predicting metabolic behaviour with resource allocation in dynamic-cyclic environments.</p><p><strong>Availability and implementation: </strong>Extensive documentation, installation steps, tutorials, and examples are available at https://tp-watson-python-cfba.readthedocs.io/en/. The py_cFBA python package is available at https://pypi.org/project/py-cfba/.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae174"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593493/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Summary: We present py_cFBA, a Python-based toolbox for conditional flux balance analysis (cFBA). Our toolbox allows for an easy implementation of cFBA models using a well-documented and modular approach and supports the generation of Systems Biology Markup Language models. The toolbox is designed to be user-friendly, versatile, and freely available to non-commercial users, serving as a valuable resource for researchers predicting metabolic behaviour with resource allocation in dynamic-cyclic environments.
Availability and implementation: Extensive documentation, installation steps, tutorials, and examples are available at https://tp-watson-python-cfba.readthedocs.io/en/. The py_cFBA python package is available at https://pypi.org/project/py-cfba/.