Discovery of Nanosota-9 as anti-Omicron nanobody therapeutic candidate.

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2024-11-26 eCollection Date: 2024-11-01 DOI:10.1371/journal.ppat.1012726
Gang Ye, Fan Bu, Divyasha Saxena, Hailey Turner-Hubbard, Morgan Herbst, Benjamin Spiller, Brian E Wadzinski, Lanying Du, Bin Liu, Jian Zheng, Fang Li
{"title":"Discovery of Nanosota-9 as anti-Omicron nanobody therapeutic candidate.","authors":"Gang Ye, Fan Bu, Divyasha Saxena, Hailey Turner-Hubbard, Morgan Herbst, Benjamin Spiller, Brian E Wadzinski, Lanying Du, Bin Liu, Jian Zheng, Fang Li","doi":"10.1371/journal.ppat.1012726","DOIUrl":null,"url":null,"abstract":"<p><p>Omicron subvariants of SARS-CoV-2 continue to pose a significant global health threat. Nanobodies, single-domain antibodies derived from camelids, are promising therapeutic tools against pandemic viruses due to their favorable properties. In this study, we identified a novel nanobody, Nanosota-9, which demonstrates high potency against a wide range of Omicron subvariants both in vitro and in a mouse model. Cryo-EM data revealed that Nanosota-9 neutralizes Omicron through a unique mechanism: two Nanosota-9 molecules crosslink two receptor-binding domains (RBDs) of the trimeric Omicron spike protein, preventing the RBDs from binding to the ACE2 receptor. This mechanism explains its strong anti-Omicron potency. Additionally, the Nanosota-9 binding epitopes on the spike protein are relatively conserved among Omicron subvariants, contributing to its broad anti-Omicron spectrum. Combined with our recently developed structure-guided in vitro evolution approach for nanobodies, Nanosota-9 has the potential to serve as the foundation for a superior anti-Omicron therapeutic.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"20 11","pages":"e1012726"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630572/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012726","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Omicron subvariants of SARS-CoV-2 continue to pose a significant global health threat. Nanobodies, single-domain antibodies derived from camelids, are promising therapeutic tools against pandemic viruses due to their favorable properties. In this study, we identified a novel nanobody, Nanosota-9, which demonstrates high potency against a wide range of Omicron subvariants both in vitro and in a mouse model. Cryo-EM data revealed that Nanosota-9 neutralizes Omicron through a unique mechanism: two Nanosota-9 molecules crosslink two receptor-binding domains (RBDs) of the trimeric Omicron spike protein, preventing the RBDs from binding to the ACE2 receptor. This mechanism explains its strong anti-Omicron potency. Additionally, the Nanosota-9 binding epitopes on the spike protein are relatively conserved among Omicron subvariants, contributing to its broad anti-Omicron spectrum. Combined with our recently developed structure-guided in vitro evolution approach for nanobodies, Nanosota-9 has the potential to serve as the foundation for a superior anti-Omicron therapeutic.

发现作为抗 Omicron 纳米抗体候选疗法的 Nanosota-9。
SARS-CoV-2的Omicron亚变种继续对全球健康构成重大威胁。纳米抗体是从驼科动物中提取的单域抗体,因其良好的特性而成为抗击流行性病毒的治疗工具。在这项研究中,我们发现了一种新型纳米抗体--Nanosota-9,它在体外和小鼠模型中对多种奥米克龙亚变体都有很强的抵抗力。冷冻电镜数据显示,Nanosota-9 通过一种独特的机制中和了 Omicron:两个 Nanosota-9 分子交联了三聚 Omicron 尖峰蛋白的两个受体结合域 (RBD),阻止了 RBD 与 ACE2 受体结合。这种机理解释了其强大的抗欧米克龙效力。此外,尖峰蛋白上的 Nanosota-9 结合表位在 Omicron 亚变体中相对保守,这也是其抗 Omicron 广谱性的原因之一。结合我们最近开发的以结构为指导的纳米抗体体外进化方法,Nanosota-9 有潜力成为卓越的抗奥米克隆疗法的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信