{"title":"Impact of uterine displacement on T<sub>2</sub>-weighted image quality in the female pelvic MRI.","authors":"Hironobu Ishikawa, Masahiko Monma, Yoshiyuki Ishimori, Kousaku Saotome, Shiro Ishii, Hirofumi Sekino, Ryo Yamakuni, Takeyasu Kakamu, Daisuke Oura, Yuma Takahashi, Shinya Seino, Masanori Yusa, Hiroshi Ito","doi":"10.1007/s12194-024-00861-3","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the importance of T<sub>2</sub>-weighted image in clinical practice, artifacts can significantly degrade image quality and affect diagnosis. This study quantitatively analyzed uterine displacement and surveyed the relationship between the image quality of fast-spin-echo-T<sub>2</sub>-weighted image of the female pelvis and quantitative value of uterine displacement. Overall, 147 women (mean age, 46.0 ± 12.8 years; age range, 22-84 years) who had undergone pelvic magnetic resonance imaging examination using a 3 T- magnetic resonance imaging scanner were included. Two radiologists performed a visual assessment of the fast-spin-echo-T<sub>2</sub>-weighted image in the sagittal plane in terms of ghosts and motion blur, and classified the image quality into the following three groups: poor, moderate, and excellent. Uterine displacement on half-Fourier acquisition single-shot turbo spin-echo-cine images was calculated, and the maximum amplitude of uterine displacement and summation of uterine displacement were calculated from the displacement map images. The Kruskal-Wallis and Steel-Dwass tests were performed to compare the maximum amplitude of uterine displacement and summation of uterine displacement among the three groups. Poor, moderate, and excellent image qualities were observed in 48, 71, and 28 patients, respectively. The quality of fast-spin-echo-T<sub>2</sub>-weighted images degraded statistically significantly with P < 0.01 as the maximum amplitude of uterine displacement increased. The summation of uterine displacement in the poor and moderate groups had greater statistical significance with P < 0.01 than that in the excellent group.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00861-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the importance of T2-weighted image in clinical practice, artifacts can significantly degrade image quality and affect diagnosis. This study quantitatively analyzed uterine displacement and surveyed the relationship between the image quality of fast-spin-echo-T2-weighted image of the female pelvis and quantitative value of uterine displacement. Overall, 147 women (mean age, 46.0 ± 12.8 years; age range, 22-84 years) who had undergone pelvic magnetic resonance imaging examination using a 3 T- magnetic resonance imaging scanner were included. Two radiologists performed a visual assessment of the fast-spin-echo-T2-weighted image in the sagittal plane in terms of ghosts and motion blur, and classified the image quality into the following three groups: poor, moderate, and excellent. Uterine displacement on half-Fourier acquisition single-shot turbo spin-echo-cine images was calculated, and the maximum amplitude of uterine displacement and summation of uterine displacement were calculated from the displacement map images. The Kruskal-Wallis and Steel-Dwass tests were performed to compare the maximum amplitude of uterine displacement and summation of uterine displacement among the three groups. Poor, moderate, and excellent image qualities were observed in 48, 71, and 28 patients, respectively. The quality of fast-spin-echo-T2-weighted images degraded statistically significantly with P < 0.01 as the maximum amplitude of uterine displacement increased. The summation of uterine displacement in the poor and moderate groups had greater statistical significance with P < 0.01 than that in the excellent group.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.