Giovanna Bastari, Virginia Solar Fernandez, Maurizio Muzzi, Sandra Moreno, Maria Marino, Marco Fiocchetti
{"title":"Neuroglobin-enriched secretome provides neuroprotection against hydrogen peroxide and mitochondrial toxin-induced cellular stress.","authors":"Giovanna Bastari, Virginia Solar Fernandez, Maurizio Muzzi, Sandra Moreno, Maria Marino, Marco Fiocchetti","doi":"10.15698/cst2024.11.300","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant response to physiological cell stress is part of the mechanisms underlying the development of diverse human diseases, including neuropathologies. Neuroglobin (NGB), an intracellular monomeric globin, has gained attention for its role in endogenous stress response pathways in neuroprotection. To date, evidence supports the concept of NGB as an inducible protein, triggered by physiological and pathological stimuli via transcriptional and/or post-transcriptional mechanisms, offering cell-autonomous neuroprotective functions under various cellular stresses. Notably, recent evidence suggests the extracellular occurrence of NGB. We aimed to explore whether NGB redistribution in the cell microenvironment may serve in transmitting resilience capability in a model with neuronal characteristics. Results obtained in SH-SY5Y demonstrated that intracellular NGB upregulation is associated with the promotion of the extracellular release of the globin. Additionally, cell secretome from NGB-overexpressing cells, characterized by globin accumulation, exhibits protective effects against oxidative stress and mitochondrial toxicity, as evidenced by reduced apoptosis and preserved mitochondrial structure. These findings shed light on the potential significance of extracellular NGB as part of a common cell response to physiological and stress conditions and as a factor promoting cell resilience. Furthermore, the potential for neuroprotection of extracellular NGB paves the way for future therapeutic opportunities.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"8 ","pages":"99-111"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15698/cst2024.11.300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aberrant response to physiological cell stress is part of the mechanisms underlying the development of diverse human diseases, including neuropathologies. Neuroglobin (NGB), an intracellular monomeric globin, has gained attention for its role in endogenous stress response pathways in neuroprotection. To date, evidence supports the concept of NGB as an inducible protein, triggered by physiological and pathological stimuli via transcriptional and/or post-transcriptional mechanisms, offering cell-autonomous neuroprotective functions under various cellular stresses. Notably, recent evidence suggests the extracellular occurrence of NGB. We aimed to explore whether NGB redistribution in the cell microenvironment may serve in transmitting resilience capability in a model with neuronal characteristics. Results obtained in SH-SY5Y demonstrated that intracellular NGB upregulation is associated with the promotion of the extracellular release of the globin. Additionally, cell secretome from NGB-overexpressing cells, characterized by globin accumulation, exhibits protective effects against oxidative stress and mitochondrial toxicity, as evidenced by reduced apoptosis and preserved mitochondrial structure. These findings shed light on the potential significance of extracellular NGB as part of a common cell response to physiological and stress conditions and as a factor promoting cell resilience. Furthermore, the potential for neuroprotection of extracellular NGB paves the way for future therapeutic opportunities.
Cell StressBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
13.50
自引率
0.00%
发文量
21
审稿时长
15 weeks
期刊介绍:
Cell Stress is an open-access, peer-reviewed journal that is dedicated to publishing highly relevant research in the field of cellular pathology. The journal focuses on advancing our understanding of the molecular, mechanistic, phenotypic, and other critical aspects that underpin cellular dysfunction and disease. It specifically aims to foster cell biology research that is applicable to a range of significant human diseases, including neurodegenerative disorders, myopathies, mitochondriopathies, infectious diseases, cancer, and pathological aging.
The scope of Cell Stress is broad, welcoming submissions that represent a spectrum of research from fundamental to translational and clinical studies. The journal is a valuable resource for scientists, educators, and policymakers worldwide, as well as for any individual with an interest in cellular pathology. It serves as a platform for the dissemination of research findings that are instrumental in the investigation, classification, diagnosis, and therapeutic management of major diseases. By being open-access, Cell Stress ensures that its content is freely available to a global audience, thereby promoting international scientific collaboration and accelerating the exchange of knowledge within the research community.