Elisa Rodrigues Sousa, Simone de Brot, Eugenio Zoni, Soheila Zeinali, Andrea Brunello, Mario Scarpa, Marta De Menna, Federico La Manna, Allen Abey Alexander, Irena Klima, David W Freeman, Brooke L Gates, Domenico A Cristaldi, Olivier T Guenat, Boudewijn P T Kruithof, Benjamin T Spike, Panagiotis Chouvardas, Marianna Kruithof-de Julio
{"title":"CRIPTO's multifaceted role in driving aggressive prostate cancer unveiled by in vivo, organoid, and patient data.","authors":"Elisa Rodrigues Sousa, Simone de Brot, Eugenio Zoni, Soheila Zeinali, Andrea Brunello, Mario Scarpa, Marta De Menna, Federico La Manna, Allen Abey Alexander, Irena Klima, David W Freeman, Brooke L Gates, Domenico A Cristaldi, Olivier T Guenat, Boudewijn P T Kruithof, Benjamin T Spike, Panagiotis Chouvardas, Marianna Kruithof-de Julio","doi":"10.1038/s41388-024-03230-x","DOIUrl":null,"url":null,"abstract":"<p><p>CRIPTO (or CR-1 or TDGF1) is a protein that plays an active role in tumor initiation and progression. We have confirmed that increased expression of CRIPTO is associated with clinical and prostate-specific antigen (PSA) progression in human prostate tissues. Our approach involved gaining insight into the role of CRIPTO signaling in castration-resistant Nkx3.1-expressing cells (CARNs), targets for oncogenic transformation in prostate cancer (PCa), by integrating the existing Cripto<sup>flox/flox</sup> into CARNs model. The most aggressive stage was modeled using an inducible Cre under control of the Nkx3.1 promoter conferring Nkx3.1 inactivation and driving Pten inactivation, oncogenic Kras activation, and lineage tracing with yellow fluorescence protein (EYFP) upon induction. Our findings provide evidence that selective depletion of Cripto in epithelial cells in vivo reduced the invasive phenotype, particularly in more advanced tumor stages. Moreover, in vitro experiments with Cripto overexpression demonstrated alterations in the physical features of organoids, which correlated with increased tumorigenic activity. Transcriptomic analyses revealed a unique CRIPTO/MYC co-activation signature associated with PSA progression in a human PCa cohort. Taken together, our data highlights a role for CRIPTO in tumor invasiveness and progression, which carries implications for biomarkers and targeted therapies.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-024-03230-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRIPTO (or CR-1 or TDGF1) is a protein that plays an active role in tumor initiation and progression. We have confirmed that increased expression of CRIPTO is associated with clinical and prostate-specific antigen (PSA) progression in human prostate tissues. Our approach involved gaining insight into the role of CRIPTO signaling in castration-resistant Nkx3.1-expressing cells (CARNs), targets for oncogenic transformation in prostate cancer (PCa), by integrating the existing Criptoflox/flox into CARNs model. The most aggressive stage was modeled using an inducible Cre under control of the Nkx3.1 promoter conferring Nkx3.1 inactivation and driving Pten inactivation, oncogenic Kras activation, and lineage tracing with yellow fluorescence protein (EYFP) upon induction. Our findings provide evidence that selective depletion of Cripto in epithelial cells in vivo reduced the invasive phenotype, particularly in more advanced tumor stages. Moreover, in vitro experiments with Cripto overexpression demonstrated alterations in the physical features of organoids, which correlated with increased tumorigenic activity. Transcriptomic analyses revealed a unique CRIPTO/MYC co-activation signature associated with PSA progression in a human PCa cohort. Taken together, our data highlights a role for CRIPTO in tumor invasiveness and progression, which carries implications for biomarkers and targeted therapies.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.