Ann M. Dulhanty , Jaime S. Rubin , Gordon F. Whitmore
{"title":"Complementation of the DNA-repair defect in a CHO mutant by human DNA that lacks highly abundant repetitive sequences","authors":"Ann M. Dulhanty , Jaime S. Rubin , Gordon F. Whitmore","doi":"10.1016/0167-8817(88)90022-3","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, two human DNA-repair genes have been cloned which complement the defects in complementation groups 1 and 2 of the CHO mutants which are sensitive to ultraviolet light and deficient in the incision step of excision repair. Here we report human gene transfer-mediated complementation of a group 4 CHO mutant sensitive to ultraviolet light and mitomycin C (MMC). The transfectants generated by transfecting human DNA into the repair-deficient cell line demonstrate the repair-proficient phenotype, as they have wild-type levels of resistance to UV light and MMC and are competent in performing the incision step of excision erpair in response to UV irradiation. 3 of the 8 transfectants isolated display no detectable human repetitive sequences, while the other 5 contain varying amounts of human repetitive DNA. As the evidence suggests that all of the transfectants are repair-proficient as a result of the uptake of humand DNA, we conclude that the human gene that complements the repair defect in group 4 CHO mutants contains no highly abundant human repetitive sequences. This imposes the necessity of developing cloning strategies involving the identification of sequences that flank the gene.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1988-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(88)90022-3","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0167881788900223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Recently, two human DNA-repair genes have been cloned which complement the defects in complementation groups 1 and 2 of the CHO mutants which are sensitive to ultraviolet light and deficient in the incision step of excision repair. Here we report human gene transfer-mediated complementation of a group 4 CHO mutant sensitive to ultraviolet light and mitomycin C (MMC). The transfectants generated by transfecting human DNA into the repair-deficient cell line demonstrate the repair-proficient phenotype, as they have wild-type levels of resistance to UV light and MMC and are competent in performing the incision step of excision erpair in response to UV irradiation. 3 of the 8 transfectants isolated display no detectable human repetitive sequences, while the other 5 contain varying amounts of human repetitive DNA. As the evidence suggests that all of the transfectants are repair-proficient as a result of the uptake of humand DNA, we conclude that the human gene that complements the repair defect in group 4 CHO mutants contains no highly abundant human repetitive sequences. This imposes the necessity of developing cloning strategies involving the identification of sequences that flank the gene.