A computational tool to optimize clinical trial parameter selection in Duchenne muscular dystrophy: A practical guide and case studies.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Jordan Wilk, Varun Aggarwal, Mike Pauley, Diane Corey, Daniela J Conrado, Karthik Lingineni, Juan Francisco Morales, Deok Yong Yoon, Yi Zhang, Zihan Cui, Jackson Burton, Jane Larkindale, Shu Chin Ma, Collin Hovinga, Terina Martinez, Klaus Romero, Ramona Belfiore-Oshan, Sarah Kim
{"title":"A computational tool to optimize clinical trial parameter selection in Duchenne muscular dystrophy: A practical guide and case studies.","authors":"Jordan Wilk, Varun Aggarwal, Mike Pauley, Diane Corey, Daniela J Conrado, Karthik Lingineni, Juan Francisco Morales, Deok Yong Yoon, Yi Zhang, Zihan Cui, Jackson Burton, Jane Larkindale, Shu Chin Ma, Collin Hovinga, Terina Martinez, Klaus Romero, Ramona Belfiore-Oshan, Sarah Kim","doi":"10.1002/psp4.13281","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD), a rare pediatric disease, presents numerous challenges when designing clinical trials, mainly due to the scarcity of available trial participants and the heterogeneity of disease progression. A quantitative clinical trial simulator (CTS) has been developed based on previously published five disease progression models describing each of the longitudinal changes in the velocity at which individuals can complete specified timed functional tests, frequently used as clinical trial efficacy endpoints (supine-stand, 4-stair climb, and 10 m walk/run test or 30-foot walk/run test), as well as each of the longitudinal changes in forced vital capacity and North Star Ambulatory Assessment total score. The model-based CTS allows researchers to optimize the selection of numerous trial parameters for designing trials for the five functional measures commonly used as endpoints in DMD clinical trials. This case report serves as a demonstration of the tool's functionality while providing an easy-to-follow guide for users to reference when preparing simulations of their own design. Two case studies, using input selection based on previous DMD clinical trials, provide realistic examples of how the tool can help optimize clinical trial design without the risk of decreasing statistical significance. This optimization allows researchers to mitigate the risk of designing trials that may be longer, larger, or more inclusive/exclusive than necessary.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13281","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Duchenne muscular dystrophy (DMD), a rare pediatric disease, presents numerous challenges when designing clinical trials, mainly due to the scarcity of available trial participants and the heterogeneity of disease progression. A quantitative clinical trial simulator (CTS) has been developed based on previously published five disease progression models describing each of the longitudinal changes in the velocity at which individuals can complete specified timed functional tests, frequently used as clinical trial efficacy endpoints (supine-stand, 4-stair climb, and 10 m walk/run test or 30-foot walk/run test), as well as each of the longitudinal changes in forced vital capacity and North Star Ambulatory Assessment total score. The model-based CTS allows researchers to optimize the selection of numerous trial parameters for designing trials for the five functional measures commonly used as endpoints in DMD clinical trials. This case report serves as a demonstration of the tool's functionality while providing an easy-to-follow guide for users to reference when preparing simulations of their own design. Two case studies, using input selection based on previous DMD clinical trials, provide realistic examples of how the tool can help optimize clinical trial design without the risk of decreasing statistical significance. This optimization allows researchers to mitigate the risk of designing trials that may be longer, larger, or more inclusive/exclusive than necessary.

优化杜氏肌营养不良症临床试验参数选择的计算工具:实用指南和案例研究。
杜氏肌营养不良症(DMD)是一种罕见的儿科疾病,在设计临床试验时面临诸多挑战,主要原因是可用的试验参与者稀少以及疾病进展的异质性。研究人员根据之前发表的五个疾病进展模型开发了一种定量临床试验模拟器(CTS),这些模型描述了患者完成特定计时功能测试(经常用作临床试验疗效终点)(仰卧起坐、四步爬楼梯、10 米步行/跑步测试或 30 英尺步行/跑步测试)的速度的纵向变化,以及强迫生命容量和北辰行动评估总分的纵向变化。基于模型的 CTS 使研究人员能够优化众多试验参数的选择,从而为 DMD 临床试验中常用的五项功能测量终点设计试验。本案例报告展示了该工具的功能,同时为用户提供了简明易懂的指南,供他们在准备自己的模拟设计时参考。两个案例研究使用基于以往 DMD 临床试验的输入选择,提供了现实的例子,说明该工具如何帮助优化临床试验设计,而不会降低统计显著性的风险。通过这种优化,研究人员可以降低试验设计的风险,避免试验时间过长、规模过大或包容性/排他性过强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信