Limited sampling approach for model-informed precision dosing of daptomycin to rapidly achieving the target area under the concentration-time curve: A simulation study

IF 2.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Tomoyuki Yamada, Kazutaka Oda, Masami Nishihara, Akira Ashida
{"title":"Limited sampling approach for model-informed precision dosing of daptomycin to rapidly achieving the target area under the concentration-time curve: A simulation study","authors":"Tomoyuki Yamada,&nbsp;Kazutaka Oda,&nbsp;Masami Nishihara,&nbsp;Akira Ashida","doi":"10.1111/bcpt.14108","DOIUrl":null,"url":null,"abstract":"<p>Daptomycin, an anti-methicillin-resistant <i>Staphylococcus aureus</i> drug, causes exposure-dependent muscle toxicity and eosinophilic pneumonia. Although the area under the concentration-time curve (AUC)-guided dosing is crucial, an optimal blood sampling strategy is lacking. This study aimed to identify an optimal limited sampling strategy using Bayesian forecasting to rapidly achieve the target AUC. Two validated population pharmacokinetic models generated a virtual population of 1000 individuals (models 1 and 2 represent diverse patients and kidney transplant recipients, respectively). The AUC for each blood sample was assessed using the probability of achieving the estimated/reference AUC ratio on the second day (AUC<sub>24–48</sub>) and at the steady state (AUC<sub>ss</sub>). In Model 1, Bayesian posterior probabilities for AUC<sub>24–48</sub> increased from 50.7% (<i>a priori</i>) to 59.4% and for AUC<sub>ss</sub> from 48.9% (<i>a priori</i>) to 61.9%, with one-point C<sub>trough</sub> sampling at 24 h. With two-point sampling at 7 and 24 h, the probabilities increased to 73.8% for AUC<sub>24–48</sub> and 69.7% for AUC<sub>ss</sub>. In Model 2, the probabilities for both AUC<sub>24–48</sub> and AUC<sub>ss</sub> with one-point C<sub>trough</sub> or two-point sampling incorporating C<sub>trough</sub> sampling increased compared to <i>a priori</i> probabilities. These results suggest that two-point sampling incorporating C<sub>trough</sub> during initial dosing enhanced achieving the target AUC<sub>24–48</sub> and AUC<sub>ss</sub> rapidly.</p>","PeriodicalId":8733,"journal":{"name":"Basic & Clinical Pharmacology & Toxicology","volume":"136 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bcpt.14108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic & Clinical Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.14108","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Daptomycin, an anti-methicillin-resistant Staphylococcus aureus drug, causes exposure-dependent muscle toxicity and eosinophilic pneumonia. Although the area under the concentration-time curve (AUC)-guided dosing is crucial, an optimal blood sampling strategy is lacking. This study aimed to identify an optimal limited sampling strategy using Bayesian forecasting to rapidly achieve the target AUC. Two validated population pharmacokinetic models generated a virtual population of 1000 individuals (models 1 and 2 represent diverse patients and kidney transplant recipients, respectively). The AUC for each blood sample was assessed using the probability of achieving the estimated/reference AUC ratio on the second day (AUC24–48) and at the steady state (AUCss). In Model 1, Bayesian posterior probabilities for AUC24–48 increased from 50.7% (a priori) to 59.4% and for AUCss from 48.9% (a priori) to 61.9%, with one-point Ctrough sampling at 24 h. With two-point sampling at 7 and 24 h, the probabilities increased to 73.8% for AUC24–48 and 69.7% for AUCss. In Model 2, the probabilities for both AUC24–48 and AUCss with one-point Ctrough or two-point sampling incorporating Ctrough sampling increased compared to a priori probabilities. These results suggest that two-point sampling incorporating Ctrough during initial dosing enhanced achieving the target AUC24–48 and AUCss rapidly.

以模型为依据的达托霉素精确给药的有限采样方法可快速达到目标浓度-时间曲线下面积:模拟研究。
达托霉素是一种抗耐甲氧西林金黄色葡萄球菌药物,会导致暴露依赖性肌肉毒性和嗜酸性粒细胞肺炎。虽然浓度-时间曲线下面积(AUC)指导用药至关重要,但目前还缺乏最佳的血液采样策略。本研究旨在利用贝叶斯预测法确定最佳有限采样策略,以快速达到目标 AUC。两个经过验证的群体药代动力学模型生成了一个由 1000 人组成的虚拟群体(模型 1 和 2 分别代表不同的患者和肾移植受者)。使用第二天(AUC24-48)和稳态(AUCss)达到估计/参考 AUC 比率的概率来评估每个血样的 AUC。在模型 1 中,24 小时单点 Ctrough 采样,AUC24-48 的贝叶斯后验概率从 50.7%(先验)增加到 59.4%,AUCss 从 48.9%(先验)增加到 61.9%。在模型 2 中,与先验概率相比,单点 Ctrough 或包含 Ctrough 采样的两点采样的 AUC24-48 和 AUCss 的概率都有所提高。这些结果表明,在初始给药过程中进行包含 Ctrough 的两点取样可快速达到目标 AUC24-48 和 AUCss。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
6.50%
发文量
126
审稿时长
1 months
期刊介绍: Basic & Clinical Pharmacology and Toxicology is an independent journal, publishing original scientific research in all fields of toxicology, basic and clinical pharmacology. This includes experimental animal pharmacology and toxicology and molecular (-genetic), biochemical and cellular pharmacology and toxicology. It also includes all aspects of clinical pharmacology: pharmacokinetics, pharmacodynamics, therapeutic drug monitoring, drug/drug interactions, pharmacogenetics/-genomics, pharmacoepidemiology, pharmacovigilance, pharmacoeconomics, randomized controlled clinical trials and rational pharmacotherapy. For all compounds used in the studies, the chemical constitution and composition should be known, also for natural compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信