Nang X. Ho, Vinh T. Nguyen, Hoe D. Nguyen, Truong V. Vu
{"title":"Dynamics of a compound droplet in a microchannel containing a long obstacle","authors":"Nang X. Ho, Vinh T. Nguyen, Hoe D. Nguyen, Truong V. Vu","doi":"10.1016/j.euromechflu.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we numerically analyze the breakup process of a two-dimensional compound droplet as it moves through a microchannel and encounters an obstacle embedded in it. Initially, the droplet is circular and concentric, and positioned near the inlet of the main channel. Under the influence of the inflow, the droplet moves toward the head of the obstacle, which has a semicircular shape. At a certain moment, the droplet and the obstacle interact with each other. With this interaction, simple daughter droplets and compound daughter droplets can be generated from the original droplet due to changes in the obstacle size, the inner droplet size, and especially the variation in surface tension described by the Weber number. The results reveal that with larger Weber numbers and smaller radii of the inner droplet and the obstacle, the compound droplet is completely separated. Based on the influence of these parameters, a phase diagram for the problem is constructed.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"110 ","pages":"Pages 25-33"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001626","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we numerically analyze the breakup process of a two-dimensional compound droplet as it moves through a microchannel and encounters an obstacle embedded in it. Initially, the droplet is circular and concentric, and positioned near the inlet of the main channel. Under the influence of the inflow, the droplet moves toward the head of the obstacle, which has a semicircular shape. At a certain moment, the droplet and the obstacle interact with each other. With this interaction, simple daughter droplets and compound daughter droplets can be generated from the original droplet due to changes in the obstacle size, the inner droplet size, and especially the variation in surface tension described by the Weber number. The results reveal that with larger Weber numbers and smaller radii of the inner droplet and the obstacle, the compound droplet is completely separated. Based on the influence of these parameters, a phase diagram for the problem is constructed.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.