Mirror symmetry and rigid structures of generalized K3 surfaces

IF 1.5 1区 数学 Q1 MATHEMATICS
Atsushi Kanazawa
{"title":"Mirror symmetry and rigid structures of generalized K3 surfaces","authors":"Atsushi Kanazawa","doi":"10.1016/j.aim.2024.110050","DOIUrl":null,"url":null,"abstract":"<div><div>The present article is concerned with mirror symmetry for generalized K3 surfaces, with particular emphasis on complex and Kähler rigid structures. Inspired by the works of Dolgachev, Aspinwall–Morrison and Huybrechts, we introduce a formulation of mirror symmetry for generalized K3 surfaces by using Mukai lattice polarizations. This approach solves issues in the conventional formulations of mirror symmetry for K3 surfaces. In particular, we provide a solution to the problem of mirror symmetry for singular K3 surfaces. Along the way, we investigate complex and Kähler rigid structures of generalized K3 surfaces.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"460 ","pages":"Article 110050"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005668","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The present article is concerned with mirror symmetry for generalized K3 surfaces, with particular emphasis on complex and Kähler rigid structures. Inspired by the works of Dolgachev, Aspinwall–Morrison and Huybrechts, we introduce a formulation of mirror symmetry for generalized K3 surfaces by using Mukai lattice polarizations. This approach solves issues in the conventional formulations of mirror symmetry for K3 surfaces. In particular, we provide a solution to the problem of mirror symmetry for singular K3 surfaces. Along the way, we investigate complex and Kähler rigid structures of generalized K3 surfaces.
广义 K3 表面的镜像对称性和刚性结构
本文关注广义 K3 表面的镜像对称性,尤其侧重于复结构和凯勒刚性结构。受多尔加乔夫、阿斯平沃尔-莫里森和赫伊布里赫茨著作的启发,我们通过使用穆凯晶格极化,引入了广义 K3 曲面的镜像对称性公式。这种方法解决了 K3 曲面镜像对称性传统公式中的问题。特别是,我们为奇异 K3 曲面的镜像对称性问题提供了解决方案。同时,我们还研究了广义 K3 表面的复结构和凯勒刚性结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信