Paralinearization and extended lifespan for solutions of the α-SQG sharp front equation

IF 1.5 1区 数学 Q1 MATHEMATICS
Massimiliano Berti , Scipio Cuccagna , Francisco Gancedo , Stefano Scrobogna
{"title":"Paralinearization and extended lifespan for solutions of the α-SQG sharp front equation","authors":"Massimiliano Berti ,&nbsp;Scipio Cuccagna ,&nbsp;Francisco Gancedo ,&nbsp;Stefano Scrobogna","doi":"10.1016/j.aim.2024.110034","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we paralinearize the contour dynamics equation for sharp-fronts of <em>α</em>-SQG, for any <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, close to a circular vortex. This turns out to be a quasi-linear Hamiltonian PDE. The key idea relies on a novel desingularization of the Hamiltonian vector field which is a convolution integral operator with nonlinear singular kernel. After deriving the asymptotic expansion of the linear frequencies of oscillations at the vortex disk and verifying the absence of three wave interactions, we prove that, in the most singular cases <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, any initial vortex patch which is <em>ε</em>-close to the disk exists for a time interval of size at least <span><math><mo>∼</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>. This quadratic lifespan result relies on a paradifferential Birkhoff normal form reduction and exploits cancellations arising from the Hamiltonian nature of the equation. This is the first normal form long time existence result of sharp fronts.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"460 ","pages":"Article 110034"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005504","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we paralinearize the contour dynamics equation for sharp-fronts of α-SQG, for any α(0,1)(1,2), close to a circular vortex. This turns out to be a quasi-linear Hamiltonian PDE. The key idea relies on a novel desingularization of the Hamiltonian vector field which is a convolution integral operator with nonlinear singular kernel. After deriving the asymptotic expansion of the linear frequencies of oscillations at the vortex disk and verifying the absence of three wave interactions, we prove that, in the most singular cases α(1,2), any initial vortex patch which is ε-close to the disk exists for a time interval of size at least ε2. This quadratic lifespan result relies on a paradifferential Birkhoff normal form reduction and exploits cancellations arising from the Hamiltonian nature of the equation. This is the first normal form long time existence result of sharp fronts.
α-SQG锐前方程解的副线性化和扩展寿命
在本文中,我们对α∈(0,1)∪(1,2)的α-SQG尖锋的等值线动力学方程进行了拟线性化处理,使其接近于一个圆形旋涡。这原来是一个准线性哈密顿 PDE。哈密顿矢量场是一个具有非线性奇异内核的卷积积分算子。在推导出涡旋盘线性振荡频率的渐近展开并验证了不存在三波相互作用之后,我们证明了在最奇异的情况下α∈(1,2),任何ε-接近盘的初始涡旋斑块都会存在至少∼ε-2大小的时间间隔。这个二次生命期结果依赖于范差伯克霍夫正态式还原,并利用了方程的哈密顿性质所产生的抵消。这是尖锐前沿的第一个正态长时间存在结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信