Linearization of Virasoro symmetries associated with semisimple Frobenius manifolds

IF 1.5 1区 数学 Q1 MATHEMATICS
Si-Qi Liu , Zhe Wang , Youjin Zhang
{"title":"Linearization of Virasoro symmetries associated with semisimple Frobenius manifolds","authors":"Si-Qi Liu ,&nbsp;Zhe Wang ,&nbsp;Youjin Zhang","doi":"10.1016/j.aim.2024.110046","DOIUrl":null,"url":null,"abstract":"<div><div>For any semisimple Frobenius manifold, we prove that a tau-symmetric bihamiltonian deformation of its Principal Hierarchy admits an infinite family of linearizable Virasoro symmetries if and only if all the central invariants of the corresponding deformation of the bihamiltonian structure are equal to <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>24</mn></mrow></mfrac></math></span>. As an important application of this result, we prove that the Dubrovin-Zhang hierarchy associated with the semisimple Frobenius manifold possesses a bihamiltonian structure which can be represented in terms of differential polynomials.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"460 ","pages":"Article 110046"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005620","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any semisimple Frobenius manifold, we prove that a tau-symmetric bihamiltonian deformation of its Principal Hierarchy admits an infinite family of linearizable Virasoro symmetries if and only if all the central invariants of the corresponding deformation of the bihamiltonian structure are equal to 124. As an important application of this result, we prove that the Dubrovin-Zhang hierarchy associated with the semisimple Frobenius manifold possesses a bihamiltonian structure which can be represented in terms of differential polynomials.
与半简单弗罗贝尼斯流形相关的维拉索罗对称性线性化
对于任何半简单弗罗本尼乌斯流形,我们证明了其主层次结构的头对称双哈密顿变形具有无限的可线性化维拉索罗对称性族,当且仅当相应的双哈密顿结构变形的所有中心不变式等于 124。作为这一结果的重要应用,我们证明了与半简单弗罗本尼乌斯流形相关的杜布罗文-张层次结构具有可以用微分多项式表示的双哈密顿结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信