{"title":"On the isometric version of Whitney's strong embedding theorem","authors":"Wentao Cao , László Székelyhidi Jr.","doi":"10.1016/j.aim.2024.110040","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a version of Whitney's strong embedding theorem for isometric embeddings within the general setting of the Nash-Kuiper h-principle. More precisely, we show that any <em>n</em>-dimensional smooth compact manifold admits infinitely many global isometric embeddings into 2<em>n</em>-dimensional Euclidean space, of Hölder class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>θ</mi></mrow></msup></math></span> with <span><math><mi>θ</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span> for <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>θ</mi><mo><</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. The proof is performed by Nash-Kuiper's convex integration construction and applying the gluing technique of the authors on short embeddings with small amplitude.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"460 ","pages":"Article 110040"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005565","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove a version of Whitney's strong embedding theorem for isometric embeddings within the general setting of the Nash-Kuiper h-principle. More precisely, we show that any n-dimensional smooth compact manifold admits infinitely many global isometric embeddings into 2n-dimensional Euclidean space, of Hölder class with for and for . The proof is performed by Nash-Kuiper's convex integration construction and applying the gluing technique of the authors on short embeddings with small amplitude.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.