Pluripotential homotopy theory

IF 1.5 1区 数学 Q1 MATHEMATICS
Jonas Stelzig
{"title":"Pluripotential homotopy theory","authors":"Jonas Stelzig","doi":"10.1016/j.aim.2024.110038","DOIUrl":null,"url":null,"abstract":"<div><div>We build free, bigraded bidifferential algebra models for the forms on a complex manifold, with respect to a strong notion of quasi-isomorphism and compatible with the conjugation symmetry. This answers a question of Sullivan. The resulting theory naturally accomodates higher operations involving double primitives. As applications, we obtain various refinements of the homotopy groups, sensitive to the complex structure. Under a simple connectedness assumption, one obtains minimal models which are unique up to isomorphism and allow for explicit computations of the new invariants.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"460 ","pages":"Article 110038"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005541","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We build free, bigraded bidifferential algebra models for the forms on a complex manifold, with respect to a strong notion of quasi-isomorphism and compatible with the conjugation symmetry. This answers a question of Sullivan. The resulting theory naturally accomodates higher operations involving double primitives. As applications, we obtain various refinements of the homotopy groups, sensitive to the complex structure. Under a simple connectedness assumption, one obtains minimal models which are unique up to isomorphism and allow for explicit computations of the new invariants.
多能同调理论
我们为复流形上的形式建立了自由的、大等级的双微分代数模型,它尊重一个强的准同构概念,并与共轭对称性兼容。这回答了苏利文的一个问题。由此产生的理论自然可以容纳涉及双重基元的高级运算。作为应用,我们得到了对复杂结构敏感的同调群的各种细化。在一个简单的连通性假设下,我们可以得到最小模型,这些模型在同构时是唯一的,并且可以明确计算新的不变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信