On the profinite homotopy type of log schemes

IF 1.5 1区 数学 Q1 MATHEMATICS
David Carchedi , Sarah Scherotzke , Nicolò Sibilla , Mattia Talpo
{"title":"On the profinite homotopy type of log schemes","authors":"David Carchedi ,&nbsp;Sarah Scherotzke ,&nbsp;Nicolò Sibilla ,&nbsp;Mattia Talpo","doi":"10.1016/j.aim.2024.110018","DOIUrl":null,"url":null,"abstract":"<div><div>We complete the program, initiated in <span><span>[8]</span></span>, to compare the many different possible definitions of the underlying homotopy type of a log scheme. We show that, up to profinite completion, they all yield the same result, and thus arrive at an unambiguous definition of the profinite homotopy type of a log scheme. Specifically, in <span><span>[8]</span></span>, we define this to be the profinite étale homotopy type of the infinite root stack, and show that, over <span><math><mi>C</mi></math></span>, this agrees up to profinite completion with the Kato-Nakayama space. Other possible candidates are the profinite shape of the Kummer étale site <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>k</mi><mover><mrow><mi>e</mi></mrow><mrow><mo>´</mo></mrow></mover><mi>t</mi></mrow></msub></math></span>, or of the representable étale site of <figure><img></figure>. Our main result is that all of these notions agree, and moreover the <em>profinite</em> étale homotopy type of the infinite root stack is not sensitive to whether or not it is viewed as a pro-system in stacks, or as an actual stack (by taking the limit of the pro-system). We furthermore show that in the log regular setting, all these notions also agree with the étale homotopy type of the classical locus <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>triv</mi></mrow></msup></math></span> (up to an appropriate completion). We deduce that, over an arbitrary locally Noetherian base, the étale homotopy type of <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>N</mi></mrow></msubsup></math></span> agrees with that of <span><math><mi>B</mi><msubsup><mrow><mi>μ</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mi>N</mi></mrow></msubsup></math></span> up to completion.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"460 ","pages":"Article 110018"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005346","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We complete the program, initiated in [8], to compare the many different possible definitions of the underlying homotopy type of a log scheme. We show that, up to profinite completion, they all yield the same result, and thus arrive at an unambiguous definition of the profinite homotopy type of a log scheme. Specifically, in [8], we define this to be the profinite étale homotopy type of the infinite root stack, and show that, over C, this agrees up to profinite completion with the Kato-Nakayama space. Other possible candidates are the profinite shape of the Kummer étale site Xke´t, or of the representable étale site of
. Our main result is that all of these notions agree, and moreover the profinite étale homotopy type of the infinite root stack is not sensitive to whether or not it is viewed as a pro-system in stacks, or as an actual stack (by taking the limit of the pro-system). We furthermore show that in the log regular setting, all these notions also agree with the étale homotopy type of the classical locus Xtriv (up to an appropriate completion). We deduce that, over an arbitrary locally Noetherian base, the étale homotopy type of GmN agrees with that of BμN up to completion.
论对数方案的无穷同调类型
我们完成了[8]中提出的计划,比较了对数方案底层同调类型的多种可能定义。我们证明,在无限完备性上,它们都得出了相同的结果,从而得出了对数方案的无限同调类型的明确定义。具体地说,在 [8] 中,我们将其定义为无限根堆栈的无限 étale 同调类型,并证明在 C 上,直到无限完备为止,这个定义与加藤中山空间一致。我们的主要结果是,所有这些概念都是一致的,而且无限根堆栈的无限étale同调类型对它是否被视为堆栈中的原系统或实际堆栈(通过取原系统的极限)并不敏感。我们进一步证明,在对数正则环境中,所有这些概念也与经典位置 Xtriv 的 étale 同调类型一致(直到适当的补全)。我们推导出,在任意局部诺特基上,GmN 的 étale 同调类型与 Bμ∞N 直至完备的同调类型一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信