Recurrence rates for shifts of finite type

IF 1.5 1区 数学 Q1 MATHEMATICS
Demi Allen , Simon Baker , Balázs Bárány
{"title":"Recurrence rates for shifts of finite type","authors":"Demi Allen ,&nbsp;Simon Baker ,&nbsp;Balázs Bárány","doi":"10.1016/j.aim.2024.110039","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> be a topologically mixing shift of finite type, let <span><math><mi>σ</mi><mo>:</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>→</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> be the usual left-shift, and let <em>μ</em> be the Gibbs measure for a Hölder continuous potential that is not cohomologous to a constant. In this paper we study recurrence rates for the dynamical system <span><math><mo>(</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>,</mo><mi>σ</mi><mo>)</mo></math></span> that hold <em>μ</em>-almost surely. In particular, given a function <span><math><mi>ψ</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> we are interested in the following set<span><span><span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>ψ</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>i</mi><mo>∈</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><mspace></mspace><msub><mrow><mi>i</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>…</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>ψ</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>…</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>ψ</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msub><mspace></mspace><mspace></mspace><mtext>for infinitely many</mtext><mspace></mspace><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>.</mo></math></span></span></span></div><div>We provide sufficient conditions for <span><math><mi>μ</mi><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>ψ</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>1</mn></math></span> and sufficient conditions for <span><math><mi>μ</mi><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>ψ</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. As a corollary of these results, we discover a new critical threshold where the measure of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>ψ</mi></mrow></msub></math></span> transitions from zero to one. This threshold was previously unknown even in the special case of a non-uniform Bernoulli measure defined on the full shift. The proofs of our results combine ideas from Probability Theory and Thermodynamic Formalism. In our final section we apply our results to the study of dynamics on self-similar sets.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"460 ","pages":"Article 110039"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005553","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ΣA be a topologically mixing shift of finite type, let σ:ΣAΣA be the usual left-shift, and let μ be the Gibbs measure for a Hölder continuous potential that is not cohomologous to a constant. In this paper we study recurrence rates for the dynamical system (ΣA,σ) that hold μ-almost surely. In particular, given a function ψ:NN we are interested in the following setRψ={iΣA:in+1in+ψ(n)+1=i1iψ(n)for infinitely manynN}.
We provide sufficient conditions for μ(Rψ)=1 and sufficient conditions for μ(Rψ)=0. As a corollary of these results, we discover a new critical threshold where the measure of Rψ transitions from zero to one. This threshold was previously unknown even in the special case of a non-uniform Bernoulli measure defined on the full shift. The proofs of our results combine ideas from Probability Theory and Thermodynamic Formalism. In our final section we apply our results to the study of dynamics on self-similar sets.
有限类型转移的递推率
设ΣA 是有限类型的拓扑混合位移,σ:ΣA→ΣA 是通常的左移,μ 是霍尔德连续势的吉布斯度量,而霍尔德连续势不是与常数同源的。在本文中,我们将研究μ几乎肯定成立的动力系统(ΣA,σ)的递推率。特别是,给定函数ψ:N→N,我们感兴趣的是以下集合Rψ={i∈ΣA:in+1...in+ψ(n)+1=i1...iψ(n)for infinitely manyn∈N}。我们提供了 μ(Rψ)=1 的充分条件和 μ(Rψ)=0 的充分条件。作为这些结果的推论,我们发现了一个新的临界阈值,在这个阈值上,Rψ的度量从零过渡到一。即使是在定义于全移的非均匀伯努利度量的特殊情况下,这个临界值以前也是未知的。我们的结果证明结合了概率论和热力学形式主义的思想。在最后一节,我们将我们的结果应用于自相似集上的动力学研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信