Wasserstein convergence rates for empirical measures of random subsequence of {nα}

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Bingyao Wu , Jie-Xiang Zhu
{"title":"Wasserstein convergence rates for empirical measures of random subsequence of {nα}","authors":"Bingyao Wu ,&nbsp;Jie-Xiang Zhu","doi":"10.1016/j.spa.2024.104534","DOIUrl":null,"url":null,"abstract":"<div><div>Fix an irrational number <span><math><mi>α</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo></mrow></math></span> be independent, identically distributed, integer-valued random variables with characteristic function <span><math><mi>φ</mi></math></span>, and let <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span> be the partial sums. Consider the random walk <span><math><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mi>α</mi><mo>}</mo></mrow></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span> on the torus, where <span><math><mrow><mo>{</mo><mi>⋅</mi><mo>}</mo></mrow></math></span> denotes the fractional part. We study the long time asymptotic behavior of the empirical measure of this random walk to the uniform distribution under the general <span><math><mi>p</mi></math></span>-Wasserstein distance. Our results show that the Wasserstein convergence rate depends on the Diophantine properties of <span><math><mi>α</mi></math></span> and the Hölder continuity of the characteristic function <span><math><mi>φ</mi></math></span> at the origin, and there is an interesting critical phenomenon that will occur. The proof is based on the PDE approach developed by L. Ambrosio, F. Stra and D. Trevisan in Ambrosio et al. (2019) and the continued fraction representation of the irrational number <span><math><mi>α</mi></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"181 ","pages":"Article 104534"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002424","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Fix an irrational number α. Let X1,X2, be independent, identically distributed, integer-valued random variables with characteristic function φ, and let Sn=i=1nXi be the partial sums. Consider the random walk {Snα}n1 on the torus, where {} denotes the fractional part. We study the long time asymptotic behavior of the empirical measure of this random walk to the uniform distribution under the general p-Wasserstein distance. Our results show that the Wasserstein convergence rate depends on the Diophantine properties of α and the Hölder continuity of the characteristic function φ at the origin, and there is an interesting critical phenomenon that will occur. The proof is based on the PDE approach developed by L. Ambrosio, F. Stra and D. Trevisan in Ambrosio et al. (2019) and the continued fraction representation of the irrational number α.
{nα}随机子序列经验测量的瓦瑟斯坦收敛率
设一个无理数 α,设 X1,X2,...为独立、同分布、整数值随机变量,其特征函数为 φ,设 Sn=∑i=1nXi 为偏和。考虑环上的随机漫步 {Snα}n≥1,其中 {⋅} 表示分数部分。我们研究了在一般 p-Wasserstein 距离下这种随机漫步到均匀分布的经验度量的长期渐近行为。我们的结果表明,瓦瑟斯坦收敛率取决于 α 的 Diophantine 特性和原点处特征函数 φ 的 Hölder 连续性,而且会出现一个有趣的临界现象。证明基于 L. Ambrosio、F. Stra 和 D. Trevisan 在 Ambrosio 等人 (2019) 中提出的 PDE 方法以及无理数 α 的续分表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信