Luis Antonio Pulido-Victoria , Antonio Flores-Tlacuahuac , Alexander Panales-Pérez , Tania E. Lara-Ceniceros , Manuel Alejandro Ávila-López , José Bonilla-Cruz
{"title":"Prediction of viscoelastic and printability properties on binder-free TiO2-based ceramic pastes by DIW through a machine learning approach","authors":"Luis Antonio Pulido-Victoria , Antonio Flores-Tlacuahuac , Alexander Panales-Pérez , Tania E. Lara-Ceniceros , Manuel Alejandro Ávila-López , José Bonilla-Cruz","doi":"10.1016/j.compchemeng.2024.108920","DOIUrl":null,"url":null,"abstract":"<div><div>Ceramic 3D printing has become an increasingly popular manufacturing technique due to its potential to create complex geometries with high precision. However, predicting the printability of ceramic pastes remains a challenge, as it depends on various rheological properties. In this study, we propose a feed-forward deep neural network model that predicts the printability of ceramic pastes based on two suggested criteria, a shear-thinning ability and a gel point greater than <span><math><mrow><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> Pa. The model is trained on a dataset built from rheological and viscoelastic characterizations of pastes, and validated on a separate test set. Our results show that the proposed learning model achieves small relative error in predicting the gel point of the ceramic pastes, with a mean value of 8.99181 and a standard deviation of 1.812864. This model has the potential to improve the efficiency and quality of ceramic 3D printing by enabling rapid and accurate predictions of paste printability.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"193 ","pages":"Article 108920"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003387","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Ceramic 3D printing has become an increasingly popular manufacturing technique due to its potential to create complex geometries with high precision. However, predicting the printability of ceramic pastes remains a challenge, as it depends on various rheological properties. In this study, we propose a feed-forward deep neural network model that predicts the printability of ceramic pastes based on two suggested criteria, a shear-thinning ability and a gel point greater than Pa. The model is trained on a dataset built from rheological and viscoelastic characterizations of pastes, and validated on a separate test set. Our results show that the proposed learning model achieves small relative error in predicting the gel point of the ceramic pastes, with a mean value of 8.99181 and a standard deviation of 1.812864. This model has the potential to improve the efficiency and quality of ceramic 3D printing by enabling rapid and accurate predictions of paste printability.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.