Dynamic nuclear polarization mechanism in isolated NV-centers at high magnetic fields

IF 2.624
Shubham Kumar Debadatta, Sheetal Kumar Jain
{"title":"Dynamic nuclear polarization mechanism in isolated NV-centers at high magnetic fields","authors":"Shubham Kumar Debadatta,&nbsp;Sheetal Kumar Jain","doi":"10.1016/j.jmro.2024.100178","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrogen vacancy centers in diamonds are promising spin-based quantum sensors and qubits. These optically addressable paramagnetic point defects have the potential to allow efficient dynamic nuclear polarization (DNP) under ambient conditions due to their large electron spin polarization and long spin coherence time. NV-based DNP studies have shown significant sensitivity enhancement of <sup>13</sup>C nuclear magnetic resonance (NMR). In this work, we present an analytical theory using a density matrix and average Hamiltonian theory for NV-<sup>13</sup>C spin system under varying magnetic fields, internal interaction strengths, and microwave irradiation parameters. We use a reduced basis approach under selective excitation of a single quantum transition in NV-center electron spin levels to derive the expressions for the matching conditions, effective Hamiltonian and polarization transfer frequency. Our results provide insight into the optimal experimental conditions for efficient DNP and the impact of the internal interactions on the DNP performance. The theoretical predictions are verified using numerical simulations.</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"21 ","pages":"Article 100178"},"PeriodicalIF":2.6240,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441024000335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen vacancy centers in diamonds are promising spin-based quantum sensors and qubits. These optically addressable paramagnetic point defects have the potential to allow efficient dynamic nuclear polarization (DNP) under ambient conditions due to their large electron spin polarization and long spin coherence time. NV-based DNP studies have shown significant sensitivity enhancement of 13C nuclear magnetic resonance (NMR). In this work, we present an analytical theory using a density matrix and average Hamiltonian theory for NV-13C spin system under varying magnetic fields, internal interaction strengths, and microwave irradiation parameters. We use a reduced basis approach under selective excitation of a single quantum transition in NV-center electron spin levels to derive the expressions for the matching conditions, effective Hamiltonian and polarization transfer frequency. Our results provide insight into the optimal experimental conditions for efficient DNP and the impact of the internal interactions on the DNP performance. The theoretical predictions are verified using numerical simulations.
高磁场下孤立 NV 中心的动态核极化机制
钻石中的氮空位中心是很有前途的自旋量子传感器和量子比特。由于电子自旋极化大、自旋相干时间长,这些可光学处理的顺磁点缺陷具有在环境条件下实现高效动态核极化(DNP)的潜力。基于 NV 的 DNP 研究表明,13C 核磁共振 (NMR) 的灵敏度显著提高。在这项工作中,我们利用密度矩阵和平均哈密顿理论提出了在不同磁场、内部相互作用强度和微波辐照参数条件下 NV-13C 自旋系统的分析理论。我们采用还原基方法,在 NV 中心电子自旋水平的单量子跃迁选择性激发下,推导出匹配条件、有效哈密顿和极化转移频率的表达式。我们的结果为高效 DNP 的最佳实验条件以及内部相互作用对 DNP 性能的影响提供了启示。理论预测通过数值模拟得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信