Dominic Bui Viet, Gustavo Fimbres Weihs, Gobinath Rajarathnam, Ali Abbas
{"title":"Highly accelerated kinetic Monte Carlo models for depolymerisation systems","authors":"Dominic Bui Viet, Gustavo Fimbres Weihs, Gobinath Rajarathnam, Ali Abbas","doi":"10.1016/j.compchemeng.2024.108945","DOIUrl":null,"url":null,"abstract":"<div><div>Kinetic Monte Carlo (kMC) models are a well-established modelling framework for the simulation of complex free-radical kinetic systems. kMC models offer the advantage of discretely monitoring every chain sequence in the system, providing full accounting of the chain molecular weight distribution. These models are marred by the necessity to simulate a minimum number of molecules, which confers significant computational burden. This paper adapts and creates a highly generalizable methodology for scaling dilute radical populations in discrete stochastic models, such as Gillespie's Stochastic Simulation Algorithm (SSA). The methodology is then applied to a kMC simulation of polystyrene (PS) pyrolysis, using a modelling framework adapted from literature. The results show that the required number of simulated molecules can be successfully reduced by up to three orders of magnitude with minimal loss of convergent behaviour, corresponding to a wall-clock simulation speed reduction of between 95.2 to 99.6 % at common pyrolysis temperatures.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"193 ","pages":"Article 108945"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003636","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Kinetic Monte Carlo (kMC) models are a well-established modelling framework for the simulation of complex free-radical kinetic systems. kMC models offer the advantage of discretely monitoring every chain sequence in the system, providing full accounting of the chain molecular weight distribution. These models are marred by the necessity to simulate a minimum number of molecules, which confers significant computational burden. This paper adapts and creates a highly generalizable methodology for scaling dilute radical populations in discrete stochastic models, such as Gillespie's Stochastic Simulation Algorithm (SSA). The methodology is then applied to a kMC simulation of polystyrene (PS) pyrolysis, using a modelling framework adapted from literature. The results show that the required number of simulated molecules can be successfully reduced by up to three orders of magnitude with minimal loss of convergent behaviour, corresponding to a wall-clock simulation speed reduction of between 95.2 to 99.6 % at common pyrolysis temperatures.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.