Hanfeng Shi , Jiaqi Wei , Richu Jin , Jiaxin Peng , Xingyue Wang , Yan Hu , Xiaoqing Zhang , Jiang Liu
{"title":"Retinal structure guidance-and-adaption network for early Parkinson’s disease recognition based on OCT images","authors":"Hanfeng Shi , Jiaqi Wei , Richu Jin , Jiaxin Peng , Xingyue Wang , Yan Hu , Xiaoqing Zhang , Jiang Liu","doi":"10.1016/j.compmedimag.2024.102463","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson’s disease (PD) is a leading neurodegenerative disease globally. Precise and objective PD diagnosis is significant for early intervention and treatment. Recent studies have shown significant correlations between retinal structure information and PD based on optical coherence tomography (OCT) images, providing another potential means for early PD recognition. However, how to exploit the retinal structure information (e.g., thickness and mean intensity) from different retinal layers to improve PD recognition performance has not been studied before. Motivated by the above observations, we first propose a structural prior knowledge extraction (SPKE) module to obtain the retinal structure feature maps; then, we develop a structure-guided-and-adaption attention (SGDA) module to fully leverage the potential of different retinal layers based on the extracted retinal structure feature maps. By embedding SPKE and SGDA modules at the low stage of deep neural networks (DNNs), a retinal structure-guided-and-adaption network (RSGA-Net) is constructed for early PD recognition based on OCT images. The extensive experiments on a clinical OCT-PD dataset demonstrate the superiority of RSGA-Net over state-of-the-art methods. Additionally, we provide a visual analysis to explain how retinal structure information affects the decision-making process of DNNs.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"118 ","pages":"Article 102463"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089561112400140X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s disease (PD) is a leading neurodegenerative disease globally. Precise and objective PD diagnosis is significant for early intervention and treatment. Recent studies have shown significant correlations between retinal structure information and PD based on optical coherence tomography (OCT) images, providing another potential means for early PD recognition. However, how to exploit the retinal structure information (e.g., thickness and mean intensity) from different retinal layers to improve PD recognition performance has not been studied before. Motivated by the above observations, we first propose a structural prior knowledge extraction (SPKE) module to obtain the retinal structure feature maps; then, we develop a structure-guided-and-adaption attention (SGDA) module to fully leverage the potential of different retinal layers based on the extracted retinal structure feature maps. By embedding SPKE and SGDA modules at the low stage of deep neural networks (DNNs), a retinal structure-guided-and-adaption network (RSGA-Net) is constructed for early PD recognition based on OCT images. The extensive experiments on a clinical OCT-PD dataset demonstrate the superiority of RSGA-Net over state-of-the-art methods. Additionally, we provide a visual analysis to explain how retinal structure information affects the decision-making process of DNNs.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.