Development and demonstration of a BISON–Griffin modeling framework for the design of targeted TRISO transient experiments in the Transient Reactor Test Facility
Jacob A. Hirschhorn, Mustafa K. Jaradat, Ryan T. Sweet, Paul A. Demkowicz, Paolo Balestra, Gerhard Strydom
{"title":"Development and demonstration of a BISON–Griffin modeling framework for the design of targeted TRISO transient experiments in the Transient Reactor Test Facility","authors":"Jacob A. Hirschhorn, Mustafa K. Jaradat, Ryan T. Sweet, Paul A. Demkowicz, Paolo Balestra, Gerhard Strydom","doi":"10.1016/j.nucengdes.2024.113720","DOIUrl":null,"url":null,"abstract":"<div><div>Uranium oxycarbide (UCO)-bearing tri-structural isotropic (TRISO) particle fuels are expected to be used in numerous U.S. commercial reactor applications within the next decade. In this work, we reviewed historical particle fuel transient experiments to identify gaps in TRISO fuel performance transient testing. A BISON–Griffin modeling framework was then developed to conduct preliminary TRISO transient analyses and begin to address these gaps. The framework was demonstrated using limiting-case transient conditions from a prototypic high-temperature gas-cooled reactor (HTGR). It was then applied to develop a matrix of experiments that could be performed in the Transient Reactor Test Facility (TREAT) to (1) evaluate UCO-fueled particle performance at moderate and high heat rates, (2) assess whether historical testing involving UO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-fueled particles is applicable to modern UCO-fueled particles, (3) deconvolute the impacts of temperature and heat rate on particle transient response, and (4) collect the data needed for fuel performance model validation and/or further development.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"431 ","pages":"Article 113720"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324008203","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Uranium oxycarbide (UCO)-bearing tri-structural isotropic (TRISO) particle fuels are expected to be used in numerous U.S. commercial reactor applications within the next decade. In this work, we reviewed historical particle fuel transient experiments to identify gaps in TRISO fuel performance transient testing. A BISON–Griffin modeling framework was then developed to conduct preliminary TRISO transient analyses and begin to address these gaps. The framework was demonstrated using limiting-case transient conditions from a prototypic high-temperature gas-cooled reactor (HTGR). It was then applied to develop a matrix of experiments that could be performed in the Transient Reactor Test Facility (TREAT) to (1) evaluate UCO-fueled particle performance at moderate and high heat rates, (2) assess whether historical testing involving UO-fueled particles is applicable to modern UCO-fueled particles, (3) deconvolute the impacts of temperature and heat rate on particle transient response, and (4) collect the data needed for fuel performance model validation and/or further development.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.