Cyclic stress-strain behavior and microstructural features in copper-Cu50Zr50 metallic glass core-shell structures: Molecular dynamics and deep machine learning predictions

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ganesh Katakareddi, Kerfegarshahvir Jungalwala, Natraj Yedla
{"title":"Cyclic stress-strain behavior and microstructural features in copper-Cu50Zr50 metallic glass core-shell structures: Molecular dynamics and deep machine learning predictions","authors":"Ganesh Katakareddi,&nbsp;Kerfegarshahvir Jungalwala,&nbsp;Natraj Yedla","doi":"10.1016/j.matchemphys.2024.130183","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we report the strain-controlled cyclic deformation behavior of copper-Cu<sub>50</sub>Zr<sub>50</sub> metallic glass (MG) core-shell structures using the molecular dynamics (MD) simulation. Specimens with different MG shell thicknesses (12.5 Å−50 Å) and crystalline copper core thickness (50 Å) are used for the investigation. The cyclic deformations are carried out at a temperature of 300 K and strain amplitudes in the range of 0.05–0.13. With increasing MG thickness, the fatigue properties of the core-shell specimens improve. The fatigue ductility exponent is −0.45, and the fatigue strength exponent is −0.13. The deep machine learning model bidirectional long short-term memory (Bi-LSTM) is used to predict the cyclic stress-strain response of core-shell structures using the MD data. For training the model, 16,800 data points are used, comprising forty-three data sets. The model accurately predicts the cyclic behavior at all the strain amplitudes on the trained data. The R<sup>2</sup> values are in the range of 0.947–0.998 on the test data, indicating the goodness of the fit. Hence, the model can be used to predict the fatigue behavior of materials, reducing the time required for experimentation.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"331 ","pages":"Article 130183"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424013117","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we report the strain-controlled cyclic deformation behavior of copper-Cu50Zr50 metallic glass (MG) core-shell structures using the molecular dynamics (MD) simulation. Specimens with different MG shell thicknesses (12.5 Å−50 Å) and crystalline copper core thickness (50 Å) are used for the investigation. The cyclic deformations are carried out at a temperature of 300 K and strain amplitudes in the range of 0.05–0.13. With increasing MG thickness, the fatigue properties of the core-shell specimens improve. The fatigue ductility exponent is −0.45, and the fatigue strength exponent is −0.13. The deep machine learning model bidirectional long short-term memory (Bi-LSTM) is used to predict the cyclic stress-strain response of core-shell structures using the MD data. For training the model, 16,800 data points are used, comprising forty-three data sets. The model accurately predicts the cyclic behavior at all the strain amplitudes on the trained data. The R2 values are in the range of 0.947–0.998 on the test data, indicating the goodness of the fit. Hence, the model can be used to predict the fatigue behavior of materials, reducing the time required for experimentation.

Abstract Image

铜-Cu50Zr50 金属玻璃核壳结构的循环应力-应变行为和微观结构特征:分子动力学和深度机器学习预测
本文利用分子动力学(MD)模拟报告了铜-Cu50Zr50 金属玻璃(MG)核壳结构的应变控制循环变形行为。研究采用了不同 MG 壳厚度(12.5 Å-50 Å)和结晶铜核厚度(50 Å)的试样。在温度为 300 K、应变幅度为 0.05-0.13 的条件下进行循环变形。随着 MG 厚度的增加,芯壳试样的疲劳特性也得到了改善。疲劳延性指数为-0.45,疲劳强度指数为-0.13。利用 MD 数据,使用深度机器学习模型双向长短期记忆(Bi-LSTM)预测核壳结构的循环应力应变响应。为训练该模型,使用了 16 800 个数据点,包括 43 个数据集。模型准确预测了训练数据在所有应变振幅下的循环行为。测试数据的 R2 值在 0.947-0.998 之间,表明拟合度良好。因此,该模型可用于预测材料的疲劳行为,从而减少实验所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信