Chunfeng Wan , Jiale Hou , Guangcai Zhang , Shuai Gao , Youliang Ding , Sugong Cao , Hao Hu , Songtao Xue
{"title":"Domain adaptation based automatic identification method of vortex induced vibration of long-span bridges without prior information","authors":"Chunfeng Wan , Jiale Hou , Guangcai Zhang , Shuai Gao , Youliang Ding , Sugong Cao , Hao Hu , Songtao Xue","doi":"10.1016/j.engappai.2024.109677","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning algorithms can sensitively capture the characteristics of vortex induced vibration (VIV) of the girder in long span bridge from the extensive historical data accumulated by structural health monitoring (SHM) system over several years. These algorithms have gradually become a promising method of VIV identification. However, the algorithms proposed by previous researchers require historical VIV data to select the threshold or parameters to identify VIV. Most long-span bridges have not recorded a significant amount of VIV data since VIV is rare, or the bridge were not equipped with SHM system before. This study proposes an adaptive VIV identification method based on domain adaptation methods, which can identify VIV in real-time or in historical monitoring datasets of the target bridge without prior VIV information or parameter settings. The strong generalization ability of the proposed method is verified on the SHM dataset of two long-span suspension bridges in China. It is found that the VIV recognition accuracy of the balanced distribution adaptation (BDA) based VIV identification method is higher than that of other algorithms. In this study, the BDA based algorithm is also applied to the 8 months monitoring datasets of a long span bridge and successfully identifies more than 20 VIV events of the main girder, which has shown the stability and accuracy of the proposed algorithm.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109677"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018359","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning algorithms can sensitively capture the characteristics of vortex induced vibration (VIV) of the girder in long span bridge from the extensive historical data accumulated by structural health monitoring (SHM) system over several years. These algorithms have gradually become a promising method of VIV identification. However, the algorithms proposed by previous researchers require historical VIV data to select the threshold or parameters to identify VIV. Most long-span bridges have not recorded a significant amount of VIV data since VIV is rare, or the bridge were not equipped with SHM system before. This study proposes an adaptive VIV identification method based on domain adaptation methods, which can identify VIV in real-time or in historical monitoring datasets of the target bridge without prior VIV information or parameter settings. The strong generalization ability of the proposed method is verified on the SHM dataset of two long-span suspension bridges in China. It is found that the VIV recognition accuracy of the balanced distribution adaptation (BDA) based VIV identification method is higher than that of other algorithms. In this study, the BDA based algorithm is also applied to the 8 months monitoring datasets of a long span bridge and successfully identifies more than 20 VIV events of the main girder, which has shown the stability and accuracy of the proposed algorithm.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.