Yunxin Xie , Liangyu Jin , Chenyang Zhu , Weibin Luo , Qian Wang
{"title":"Enhanced cross-domain lithology classification in imbalanced datasets using an unsupervised domain Adversarial Network","authors":"Yunxin Xie , Liangyu Jin , Chenyang Zhu , Weibin Luo , Qian Wang","doi":"10.1016/j.engappai.2024.109668","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in Artificial Intelligence (AI), particularly deep learning, have significantly improved lithology identification in reservoir exploration by leveraging micrographic rock imagery. Deep neural networks excel in feature extraction, enhancing classification accuracy. However, these models are prone to domain shifts, which often degrade their performance in real-world applications. This paper proposes an unsupervised domain adaptation framework that integrates Fisher linear discriminant analysis and Online Hard Example Mining (OHEM) to mitigate domain shifts and improve classification, particularly in datasets with imbalanced classes. The model employs a <span><math><mi>ω</mi></math></span>-balanced global–local domain discriminator to align feature distributions between different domains and introduces focal loss with class-wise weighted factors for better handling of imbalanced data. Additionally, an adapted version of OHEM identifies difficult samples during training, allowing the model to concentrate on challenging cases. The proposed method is validated on micrographic rock imagery from the Tibet, Qinghai, and Xinjiang regions, achieving an average accuracy of 83.2%, which is 13.8% higher than ResNet50 and at least 1% superior to other domain adaptation models. This research highlights the potential of AI-driven solutions in geoscientific applications and provides a robust framework for unsupervised lithology classification.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109668"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018268","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in Artificial Intelligence (AI), particularly deep learning, have significantly improved lithology identification in reservoir exploration by leveraging micrographic rock imagery. Deep neural networks excel in feature extraction, enhancing classification accuracy. However, these models are prone to domain shifts, which often degrade their performance in real-world applications. This paper proposes an unsupervised domain adaptation framework that integrates Fisher linear discriminant analysis and Online Hard Example Mining (OHEM) to mitigate domain shifts and improve classification, particularly in datasets with imbalanced classes. The model employs a -balanced global–local domain discriminator to align feature distributions between different domains and introduces focal loss with class-wise weighted factors for better handling of imbalanced data. Additionally, an adapted version of OHEM identifies difficult samples during training, allowing the model to concentrate on challenging cases. The proposed method is validated on micrographic rock imagery from the Tibet, Qinghai, and Xinjiang regions, achieving an average accuracy of 83.2%, which is 13.8% higher than ResNet50 and at least 1% superior to other domain adaptation models. This research highlights the potential of AI-driven solutions in geoscientific applications and provides a robust framework for unsupervised lithology classification.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.