{"title":"Spatiotemporal analysis of atmospheric methane concentrations and key influencing factors using machine learning in the Middle East (2010–2021)","authors":"Seyed Mohsen Mousavi","doi":"10.1016/j.rsase.2024.101406","DOIUrl":null,"url":null,"abstract":"<div><div>Methane (CH<sub>4</sub>) is a potent greenhouse gas that significantly impacts climate change due to its rising atmospheric concentrations. Hence, it is crucial to comprehend the spatial and temporal fluctuations in atmospheric CH<sub>4</sub> concentration (XCH<sub>4</sub>) at both national and international levels. This study investigates the correlation between atmospheric XCH<sub>4</sub> concentrations (XCH<sub>4</sub>) and key influencing factors to identify the primary sources and sinks of CH<sub>4</sub> across the Middle East (ME). Initially, XCH<sub>4</sub> data from the GOSAT satellite, covering the period from 2010 to 2021, were employed to generate spatiotemporal distribution maps of XCH<sub>4</sub> across the ME region. Subsequently, the study investigated the single and simultaneous relationship between XCH<sub>4</sub> and relevant environmental factors, such as vegetation, temperature, precipitation, and others, across different months using correlation analysis and the Permutation Feature Importance (PFI) method to identify the key factors influencing XCH<sub>4</sub> variations. The results reveal significant spatial and temporal variations in XCH<sub>4</sub> concentrations, with higher levels detected in the central and southern regions of the ME during the summer months. The results also highlight the presence of both peak positive and negative correlations with temperature and moisture during winter months. Additionally, both precipitation and vegetation demonstrated negative correlations with XCH<sub>4</sub>, especially during the winter and plant-growing seasons. According to the PFI results, temperature emerged as the most significant factor, accounting for over 40% of the variance in XCH<sub>4</sub> concentrations during summer. At the same time, anthropogenic activities exerted minimal influence on these patterns. This comprehensive spatiotemporal analysis provides crucial insights into the variation of CH<sub>4</sub> and its primary drivers in this climatically vulnerable region. Identifying emission patterns can support the development of targeted mitigation policies to curb the future rise of CH<sub>4</sub>.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101406"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Methane (CH4) is a potent greenhouse gas that significantly impacts climate change due to its rising atmospheric concentrations. Hence, it is crucial to comprehend the spatial and temporal fluctuations in atmospheric CH4 concentration (XCH4) at both national and international levels. This study investigates the correlation between atmospheric XCH4 concentrations (XCH4) and key influencing factors to identify the primary sources and sinks of CH4 across the Middle East (ME). Initially, XCH4 data from the GOSAT satellite, covering the period from 2010 to 2021, were employed to generate spatiotemporal distribution maps of XCH4 across the ME region. Subsequently, the study investigated the single and simultaneous relationship between XCH4 and relevant environmental factors, such as vegetation, temperature, precipitation, and others, across different months using correlation analysis and the Permutation Feature Importance (PFI) method to identify the key factors influencing XCH4 variations. The results reveal significant spatial and temporal variations in XCH4 concentrations, with higher levels detected in the central and southern regions of the ME during the summer months. The results also highlight the presence of both peak positive and negative correlations with temperature and moisture during winter months. Additionally, both precipitation and vegetation demonstrated negative correlations with XCH4, especially during the winter and plant-growing seasons. According to the PFI results, temperature emerged as the most significant factor, accounting for over 40% of the variance in XCH4 concentrations during summer. At the same time, anthropogenic activities exerted minimal influence on these patterns. This comprehensive spatiotemporal analysis provides crucial insights into the variation of CH4 and its primary drivers in this climatically vulnerable region. Identifying emission patterns can support the development of targeted mitigation policies to curb the future rise of CH4.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems