Stability and decay rate of space-periodic solutions to porous medium equations with convection

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Yechi Liu
{"title":"Stability and decay rate of space-periodic solutions to porous medium equations with convection","authors":"Yechi Liu","doi":"10.1016/j.physleta.2024.130095","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we discuss the asymptotic stability of periodic solutions in the spacial variable to porous medium equations with convection. At first, based on the argument method of the <em>ω</em>-limit set theory in ordinary differential equations, we obtain that the periodic solution with a periodic initial function exponentially decays to its average. Then, using this result, the anti-derivative technique and energy estimates, we prove the asymptotic stability of the periodic solution and give a time decay rate.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"529 ","pages":"Article 130095"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124007898","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we discuss the asymptotic stability of periodic solutions in the spacial variable to porous medium equations with convection. At first, based on the argument method of the ω-limit set theory in ordinary differential equations, we obtain that the periodic solution with a periodic initial function exponentially decays to its average. Then, using this result, the anti-derivative technique and energy estimates, we prove the asymptotic stability of the periodic solution and give a time decay rate.
有对流的多孔介质方程空间周期解的稳定性和衰减率
本文讨论了带对流的多孔介质方程空间变量中周期解的渐近稳定性。首先,基于常微分方程中ω极限集理论的论证方法,我们得到了具有周期性初始函数的周期解指数衰减到其平均值。然后,利用这一结果、反求导技术和能量估计,我们证明了周期解的渐近稳定性,并给出了时间衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信