Jing Wang , Engang Tian , Huaicheng Yan , Fanrong Qu
{"title":"Robust adaptive control for nonlinear discrete-time systems based on DE-GMAW","authors":"Jing Wang , Engang Tian , Huaicheng Yan , Fanrong Qu","doi":"10.1016/j.chemolab.2024.105274","DOIUrl":null,"url":null,"abstract":"<div><div>Gas Metal Arc Welding (GMAW) is a critical process in manufacturing, known for its efficiency and versatility. The double-electrode GMAW (DE-GMAW) technique further enhances these attributes, offering superior welding speed and improved melting effects. However, controlling the DE-GMAW process effectively remains a complex challenge due to the nonlinear and dynamic nature of the system. The process involves intricate interactions between electrical, thermal, and mechanical phenomena, resulting in highly nonlinear behavior. Variations in material properties, environmental conditions, and external disturbances can adversely affect the welding process. Moreover, traditional control methods often fail to account for unmodeled dynamics and modeling errors, leading to performance degradation and potential instability. To address these challenges, this paper introduces a robust adaptive control scheme tailored for DE-GMAW systems, which combines online projection estimation identification and pole placement strategy at the same time to compensate for parameter uncertainties, external disturbances, and unmodeled dynamics. Simulation examples in welding process are carried out to demonstrate the effectiveness of the proposed robust adaptive control scheme.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"256 ","pages":"Article 105274"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924002144","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Gas Metal Arc Welding (GMAW) is a critical process in manufacturing, known for its efficiency and versatility. The double-electrode GMAW (DE-GMAW) technique further enhances these attributes, offering superior welding speed and improved melting effects. However, controlling the DE-GMAW process effectively remains a complex challenge due to the nonlinear and dynamic nature of the system. The process involves intricate interactions between electrical, thermal, and mechanical phenomena, resulting in highly nonlinear behavior. Variations in material properties, environmental conditions, and external disturbances can adversely affect the welding process. Moreover, traditional control methods often fail to account for unmodeled dynamics and modeling errors, leading to performance degradation and potential instability. To address these challenges, this paper introduces a robust adaptive control scheme tailored for DE-GMAW systems, which combines online projection estimation identification and pole placement strategy at the same time to compensate for parameter uncertainties, external disturbances, and unmodeled dynamics. Simulation examples in welding process are carried out to demonstrate the effectiveness of the proposed robust adaptive control scheme.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.