Yifan Dong, Rui Zheng, Deping Qian, Tack Ho Lee, Helen L. Bristow, Pabitra Shakya Tuladhar, Hyojung Cha, James R. Durrant
{"title":"Activationless Charge Transfer Drives Photocurrent Generation in Organic Photovoltaic Blends Independent of Energetic Offset","authors":"Yifan Dong, Rui Zheng, Deping Qian, Tack Ho Lee, Helen L. Bristow, Pabitra Shakya Tuladhar, Hyojung Cha, James R. Durrant","doi":"10.1021/jacs.4c11114","DOIUrl":null,"url":null,"abstract":"Organic photovoltaics (OPVs) have recently shown substantial progress in enhancing device efficiency, driven in particular by advances in the design of nonfullerene acceptors and the reduction of the energy offset driving exciton separation at the donor/acceptor interface. Herein, we employ temperature-dependent transient absorption spectroscopy to investigate the activation energy for charge generation and recombination in a range of bulk heterojunction blends with nonfullerene acceptors. Remarkably, we find that in all cases charge generation is almost activationless, in the range of 11–21 meV, independent of energetic offset. Geminate recombination is also observed to be almost activationless, with only the kinetics of bimolecular charge recombination being strongly temperature-dependent, with an activation energy >400 meV. Our observation of essentially activationless charge generation, independent of energy offset, strongly indicates that charge generation in such blends does not follow Marcus theory but can rather be considered an adiabatic process associated with the motion of thermally unrelaxed carriers.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"25 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11114","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic photovoltaics (OPVs) have recently shown substantial progress in enhancing device efficiency, driven in particular by advances in the design of nonfullerene acceptors and the reduction of the energy offset driving exciton separation at the donor/acceptor interface. Herein, we employ temperature-dependent transient absorption spectroscopy to investigate the activation energy for charge generation and recombination in a range of bulk heterojunction blends with nonfullerene acceptors. Remarkably, we find that in all cases charge generation is almost activationless, in the range of 11–21 meV, independent of energetic offset. Geminate recombination is also observed to be almost activationless, with only the kinetics of bimolecular charge recombination being strongly temperature-dependent, with an activation energy >400 meV. Our observation of essentially activationless charge generation, independent of energy offset, strongly indicates that charge generation in such blends does not follow Marcus theory but can rather be considered an adiabatic process associated with the motion of thermally unrelaxed carriers.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.