Electron diffraction unveils the 2D metal-radical framework of two molecule-based magnets†

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Emre Yörük, Constance Lecourt, Dominique Housset, Yuuta Izumi, Wai Li Ling, Stéphanie Kodjikian, Evgeny Tretyakov, Katsuya Inoue, Kseniya Maryunina, Cédric Desroches, Holger Klein and Dominique Luneau
{"title":"Electron diffraction unveils the 2D metal-radical framework of two molecule-based magnets†","authors":"Emre Yörük, Constance Lecourt, Dominique Housset, Yuuta Izumi, Wai Li Ling, Stéphanie Kodjikian, Evgeny Tretyakov, Katsuya Inoue, Kseniya Maryunina, Cédric Desroches, Holger Klein and Dominique Luneau","doi":"10.1039/D4QI02257B","DOIUrl":null,"url":null,"abstract":"<p >Low-dose electron diffraction has been instrumental in determining the crystal structures of two compounds with metal-radical coordination frameworks {[Mn<small><sup>II</sup></small><small><sub>2</sub></small>(NITIm)<small><sub>3</sub></small>]CF<small><sub>3</sub></small>SO<small><sub>3</sub></small>·CH<small><sub>3</sub></small>OH}<small><sub><em>n</em></sub></small> (<strong>1</strong>) and {[Mn<small><sup>II</sup></small><small><sub>2</sub></small>(NITImMe<small><sub>2</sub></small>)<small><sub>3</sub></small>]ClO<small><sub>4</sub></small>}<small><sub><em>n</em></sub></small> (<strong>2</strong>) that could never be grown to a crystal size large enough for single-crystal X-ray diffraction characterization. The compounds crystallize as nanocrystals upon addition of triflate (<strong>1</strong>) and perchlorate (<strong>2</strong>) anions and coordination of manganese(<small>II</small>) with bis-chelate nitronyl nitroxide radicals NITImH (<strong>1</strong>) and NITImHMe<small><sub>2</sub></small> (<strong>2</strong>) which are respectively 2-(2-imidazolyl)- and 2-(4,5-dimethylimidazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1<em>H</em>-imidazol-3-oxide-1-oxyl. The two compounds have layered crystal structures in which cationic 2D metal-radical coordination polymers {[Mn<small><sup>II</sup></small><small><sub>2</sub></small>(NITIm)<small><sub>3</sub></small>]<small><sup>+</sup></small>}<small><sub><em>n</em></sub></small> (<strong>1</strong>) and {[Mn<small><sup>II</sup></small><small><sub>2</sub></small>(NITImMe<small><sub>2</sub></small>)<small><sub>3</sub></small>]<small><sup>+</sup></small>}<small><sub><em>n</em></sub></small> (<strong>2</strong>) are separated by layers of triflate (<strong>1</strong>) or perchlorate (<strong>2</strong>) anions. Magnetic measurements evidence a ferrimagnetic behavior within the 2D metal-radical sheets due to alternating antiferromagnetically coupled spins (<em>S</em><small><sub>Mn</sub></small><small><sup>2+</sup></small> = 5/2 and <em>S</em><small><sub>radical</sub></small> = 1/2). Both compounds exhibit a long-range 3D ordering of weak-ferromagnetic type due to spin canting with Curie temperatures <em>T</em><small><sub>c</sub></small> = 45 K (<strong>1</strong>) and 40 K (<strong>2</strong>). This is associated with a field-induced metamagnetic transition from antiferromagnetic to ferromagnetic coupling of 2D metal-radical sheets. Studies of the crystal structures allows to rationalize how the molecular structure of nitronyl nitroxide radicals and of the counter-anions along with crystal packing affect the magnetic behavior related to interlayer distance and framework flexibility. These results are striking evidence that electron crystallography is a unique tool to solve structures of metal–organic compounds crystallizing as nanocrystals even with nitronyl nitroxide radical components too sensitive to typical electron doses. Overcoming the crystal size barrier, it allows the validation of chemical synthesis and the establishment of magneto-structural relationships fostering new advances in the design of molecule-based magnets.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 1","pages":" 328-341"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d4qi02257b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Low-dose electron diffraction has been instrumental in determining the crystal structures of two compounds with metal-radical coordination frameworks {[MnII2(NITIm)3]CF3SO3·CH3OH}n (1) and {[MnII2(NITImMe2)3]ClO4}n (2) that could never be grown to a crystal size large enough for single-crystal X-ray diffraction characterization. The compounds crystallize as nanocrystals upon addition of triflate (1) and perchlorate (2) anions and coordination of manganese(II) with bis-chelate nitronyl nitroxide radicals NITImH (1) and NITImHMe2 (2) which are respectively 2-(2-imidazolyl)- and 2-(4,5-dimethylimidazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl. The two compounds have layered crystal structures in which cationic 2D metal-radical coordination polymers {[MnII2(NITIm)3]+}n (1) and {[MnII2(NITImMe2)3]+}n (2) are separated by layers of triflate (1) or perchlorate (2) anions. Magnetic measurements evidence a ferrimagnetic behavior within the 2D metal-radical sheets due to alternating antiferromagnetically coupled spins (SMn2+ = 5/2 and Sradical = 1/2). Both compounds exhibit a long-range 3D ordering of weak-ferromagnetic type due to spin canting with Curie temperatures Tc = 45 K (1) and 40 K (2). This is associated with a field-induced metamagnetic transition from antiferromagnetic to ferromagnetic coupling of 2D metal-radical sheets. Studies of the crystal structures allows to rationalize how the molecular structure of nitronyl nitroxide radicals and of the counter-anions along with crystal packing affect the magnetic behavior related to interlayer distance and framework flexibility. These results are striking evidence that electron crystallography is a unique tool to solve structures of metal–organic compounds crystallizing as nanocrystals even with nitronyl nitroxide radical components too sensitive to typical electron doses. Overcoming the crystal size barrier, it allows the validation of chemical synthesis and the establishment of magneto-structural relationships fostering new advances in the design of molecule-based magnets.

Abstract Image

电子衍射揭示了两种分子磁体的二维金属-辐射框架。
低剂量电子衍射有助于确定两种化合物的晶体结构,这两种化合物具有金属-放射性配位框架{[MnII2(NITIm)3]CF3SO3.CH3OH}n (1)和{[MnII2(NITImMe2)3]ClO4}n (2)。这些化合物在加入三late (1) 和高氯酸盐 (2) 阴离子以及锰(II)与双螯合硝基亚硝氧自由基 NITImH (1) 和 NITImHMe2 (2) 配位后结晶成纳米晶体,这两个自由基分别是 2-(2-咪唑基)- 和 2-(4、5-二甲基咪唑-2-基)-4,4,5,5-四甲基-4,5-二氢-1H-咪唑-3-氧化物-1-氧乙基。这两种化合物具有层状晶体结构,其中阳离子二维金属-放射性配位聚合物{[MnII2(NITIm)3]+}n(1)和{[MnII2(NITImMe2)3]+}n(2)被三late(1)或高氯酸盐(2)阴离子层隔开。磁性测量结果表明,由于反铁磁耦合自旋(SMn2+ = 5/2 和 Sradical = 1/2)的交替作用,二维金属-激元薄片内具有铁磁性。这两种化合物在居里温度 Tc = 45 K(1)和 40 K(2)时,由于自旋悬臂作用而表现出弱铁磁性类型的长程三维有序性。这与二维金属-辐射片从反铁磁到铁磁耦合的磁场诱导的元磁转变有关。通过对晶体结构的研究,可以合理地解释硝基和反阴离子的分子结构以及晶体堆积如何影响与层间距离和框架灵活性有关的磁性行为。这些结果有力地证明了电子晶体学是一种独特的工具,可用于解决结晶为纳米晶体的金属有机化合物的结构问题,即使是对典型电子剂量过于敏感的成分。电子晶体学克服了晶体尺寸障碍,可以验证化学合成和建立磁结构关系,促进分子磁体设计的新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信