Selective metabolic regulations by p53 mutant variants in pancreatic cancer.

IF 11.4 1区 医学 Q1 ONCOLOGY
Sabrina Caporali, Alessio Butera, Alessia Ruzza, Carlotta Zampieri, Marina Bantula', Sandra Scharsich, Anna-Katerina Ückert, Ivana Celardo, Ian U Kouzel, Luigi Leanza, Andreas Gruber, Joan Montero, Angelo D'Alessandro, Thomas Brunner, Marcel Leist, Ivano Amelio
{"title":"Selective metabolic regulations by p53 mutant variants in pancreatic cancer.","authors":"Sabrina Caporali, Alessio Butera, Alessia Ruzza, Carlotta Zampieri, Marina Bantula', Sandra Scharsich, Anna-Katerina Ückert, Ivana Celardo, Ian U Kouzel, Luigi Leanza, Andreas Gruber, Joan Montero, Angelo D'Alessandro, Thomas Brunner, Marcel Leist, Ivano Amelio","doi":"10.1186/s13046-024-03232-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Approximately half of all human cancers harbour mutations in the p53 gene, leading to the generation of neomorphic p53 mutant proteins. These mutants can exert gain-of-function (GOF) effects, potentially promoting tumour progression. However, the clinical significance of p53 GOF mutations, as well as the selectivity of individual variants, remains controversial and unclear.</p><p><strong>Methods: </strong>To elucidate the metabolic regulations and molecular underpinnings associated with the specific p53<sup>R270H</sup> and p53<sup>R172H</sup> mutant variants (the mouse equivalents of human p53<sup>R273H</sup> and p53<sup>R175H</sup>, respectively), we employed a comprehensive approach. This included integrating global metabolomic analysis with epigenomic and transcriptomic profiling in mouse pancreatic cancer cells. Additionally, we assessed metabolic parameters such as oxygen consumption rate and conducted analyses of proliferation and cell-cell competition to validate the biological impact of metabolic changes on pancreatic ductal adenocarcinoma (PDAC) phenotype. Our findings were further corroborated through analysis of clinical datasets from human cancer cohorts.</p><p><strong>Results: </strong>Our investigation revealed that the p53<sup>R270H</sup> variant, but not p53<sup>R172H</sup>, sustains mitochondrial function and energy production while also influencing cellular antioxidant capacity. Conversely, p53<sup>R172H</sup>, while not affecting mitochondrial metabolism, attenuates the activation of pro-tumorigenic metabolic pathways such as the urea cycle. Thus, the two variants selectively control different metabolic pathways in pancreatic cancer cells. Mechanistically, p53<sup>R270H</sup> induces alterations in the expression of genes associated with oxidative stress and reduction in mitochondrial respiration. In contrast, p53<sup>R172H</sup> specifically impacts the expression levels of enzymes involved in the urea metabolism. However, our analysis of cell proliferation and cell competition suggested that the expression of either p53<sup>R270H</sup> or p53<sup>R172H</sup> does not influence confer any selective advantage to this cellular model in vitro. Furthermore, assessment of mitochondrial priming indicated that the p53<sup>R270H</sup>-driven mitochondrial effect does not alter cytochrome c release or the apoptotic propensity of pancreatic cancer cells.</p><p><strong>Conclusions: </strong>Our study elucidates the mutant-specific impact of p53<sup>R270H</sup> and p53<sup>R172H</sup> on metabolism of PDAC cancer cells, highlighting the need to shift from viewing p53 mutant variants as a homogeneous group of entities to a systematic assessment of each specific p53 mutant protein. Moreover, our finding underscores the importance of further exploring the significance of p53 mutant proteins using models that more accurately reflect tumor ecology.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"310"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590503/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03232-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Approximately half of all human cancers harbour mutations in the p53 gene, leading to the generation of neomorphic p53 mutant proteins. These mutants can exert gain-of-function (GOF) effects, potentially promoting tumour progression. However, the clinical significance of p53 GOF mutations, as well as the selectivity of individual variants, remains controversial and unclear.

Methods: To elucidate the metabolic regulations and molecular underpinnings associated with the specific p53R270H and p53R172H mutant variants (the mouse equivalents of human p53R273H and p53R175H, respectively), we employed a comprehensive approach. This included integrating global metabolomic analysis with epigenomic and transcriptomic profiling in mouse pancreatic cancer cells. Additionally, we assessed metabolic parameters such as oxygen consumption rate and conducted analyses of proliferation and cell-cell competition to validate the biological impact of metabolic changes on pancreatic ductal adenocarcinoma (PDAC) phenotype. Our findings were further corroborated through analysis of clinical datasets from human cancer cohorts.

Results: Our investigation revealed that the p53R270H variant, but not p53R172H, sustains mitochondrial function and energy production while also influencing cellular antioxidant capacity. Conversely, p53R172H, while not affecting mitochondrial metabolism, attenuates the activation of pro-tumorigenic metabolic pathways such as the urea cycle. Thus, the two variants selectively control different metabolic pathways in pancreatic cancer cells. Mechanistically, p53R270H induces alterations in the expression of genes associated with oxidative stress and reduction in mitochondrial respiration. In contrast, p53R172H specifically impacts the expression levels of enzymes involved in the urea metabolism. However, our analysis of cell proliferation and cell competition suggested that the expression of either p53R270H or p53R172H does not influence confer any selective advantage to this cellular model in vitro. Furthermore, assessment of mitochondrial priming indicated that the p53R270H-driven mitochondrial effect does not alter cytochrome c release or the apoptotic propensity of pancreatic cancer cells.

Conclusions: Our study elucidates the mutant-specific impact of p53R270H and p53R172H on metabolism of PDAC cancer cells, highlighting the need to shift from viewing p53 mutant variants as a homogeneous group of entities to a systematic assessment of each specific p53 mutant protein. Moreover, our finding underscores the importance of further exploring the significance of p53 mutant proteins using models that more accurately reflect tumor ecology.

胰腺癌中 p53 突变变体对代谢的选择性调节。
背景:大约一半的人类癌症都存在 p53 基因突变,导致产生新形 p53 突变蛋白。这些突变体可产生功能增益(GOF)效应,可能会促进肿瘤的进展。然而,p53 GOF 突变的临床意义以及单个变体的选择性仍存在争议且不明确:为了阐明与特定 p53R270H 和 p53R172H 突变变体(分别相当于人类 p53R273H 和 p53R175H 的小鼠变体)相关的代谢调节和分子基础,我们采用了一种综合方法。这包括将全球代谢组分析与小鼠胰腺癌细胞的表观基因组和转录组分析相结合。此外,我们还评估了氧消耗率等代谢参数,并进行了增殖和细胞间竞争分析,以验证代谢变化对胰腺导管腺癌(PDAC)表型的生物学影响。通过分析人类癌症队列的临床数据集进一步证实了我们的发现:结果:我们的研究发现,p53R270H 变体(而非 p53R172H)在维持线粒体功能和能量产生的同时,也影响了细胞的抗氧化能力。相反,p53R172H 在不影响线粒体代谢的同时,还能减弱尿素循环等促肿瘤代谢途径的激活。因此,这两种变体选择性地控制胰腺癌细胞中不同的代谢途径。从机理上讲,p53R270H 会诱导与氧化应激和线粒体呼吸减少相关的基因表达发生变化。相比之下,p53R172H 会特别影响参与尿素代谢的酶的表达水平。然而,我们对细胞增殖和细胞竞争的分析表明,p53R270H 或 p53R172H 的表达并不影响这种细胞模型在体外的选择性优势。此外,对线粒体启动的评估表明,p53R270H 驱动的线粒体效应不会改变细胞色素 c 的释放或胰腺癌细胞的凋亡倾向:我们的研究阐明了p53R270H和p53R172H突变体对PDAC癌细胞新陈代谢的影响,强调了从将p53突变体视为同类实体转变为系统评估每种特定p53突变体蛋白的必要性。此外,我们的发现还强调了利用更准确反映肿瘤生态学的模型进一步探索 p53 突变蛋白重要性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信