Identification of a Therapeutic Window for Neurovascular Unit Repair after Experimental Spinal Cord Injury.

IF 3.9 2区 医学 Q1 CLINICAL NEUROLOGY
Vanessa Hubertus, Lea Meyer, Lilly Waldmann, Laurens Roolfs, Nima Taheri, Katharina Kersting, Emily von Bronewski, Melina Nieminen-Kelhä, Irina Kremenetskaia, Christian Uhl, Kim C Fiedler, Jan-Erik Ode, Andre Rex, Harald Prüß, Asylkhan Rakhymzhan, Anja E Hauser, Raluca Niesner, Frank L Heppner, Michael G Fehlings, Peter Vajkoczy
{"title":"Identification of a Therapeutic Window for Neurovascular Unit Repair after Experimental Spinal Cord Injury.","authors":"Vanessa Hubertus, Lea Meyer, Lilly Waldmann, Laurens Roolfs, Nima Taheri, Katharina Kersting, Emily von Bronewski, Melina Nieminen-Kelhä, Irina Kremenetskaia, Christian Uhl, Kim C Fiedler, Jan-Erik Ode, Andre Rex, Harald Prüß, Asylkhan Rakhymzhan, Anja E Hauser, Raluca Niesner, Frank L Heppner, Michael G Fehlings, Peter Vajkoczy","doi":"10.1089/neu.2024.0233","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic spinal cord injury (SCI) is a devastating condition for which effective neuroregenerative and neuroreparative strategies are lacking. The post-traumatic disruption of the blood-spinal cord barrier (BSCB) as part of the neurovascular unit (NVU) is one major factor in the complex pathophysiology of SCI, which is associated with edema, inflammation, and cell death in the penumbra regions of the spinal cord adjacent to the lesion epicenter. Thus, the preservation of an intact NVU and vascular integrity to facilitate the regenerative capacity following SCI is a desirable therapeutic target. This study aims to identify a therapeutic window of opportunity for NVU repair after SCI by characterizing the timeframe of its post-traumatic disintegration and reintegration with implications for functional spinal cord recovery. Following thoracic clip-compression SCI or sham injury, adult C57BL/6J mice were followed up from one to 28 days. At one, three, seven, 14, and 28 days after SCI/sham, seven-Tesla magnetic resonance imaging (MRI), neurobehavioral analysis (Basso mouse scale, Tally subscore, CatWalk® gait analysis), and following sacrifice immunohistochemistry were performed, assessing vessel permeability via Evans blue (EVB) extravasation, (functional) vessel density, and NVU integrity. Thy1-yellow fluorescent protein+ mice were additionally implanted with a customized spinal window chamber and received longitudinal <i>in vivo</i> two-photon excitation imaging (2PM) with the injection of rhodamine-B-isothiocyanate-dextran for the combined imaging of axons and vasculature up to 14 days after SCI/sham injury. Post-traumatic edema formation as assessed by MRI volumetry peaked at one to three days after injury, while EVB permeability quantification revealed a thoroughly injured BSCB up to 14 days after SCI. Partial regeneration of functional vasculature via endogenous revascularization was detected after one to four weeks, however, with only 50-54% of existing vessels regaining functional perfusion. Longitudinal <i>in vivo</i> 2PM visualized the progressive degeneration of initially preserved spinal cord axons in the peri-traumatic zone after SCI while displaying a rarefication of functionally perfused vessels up to two weeks after injury. Neurobehavioral recovery started after one week but remained impaired over the whole observation period of four weeks after SCI. With this study, a therapeutic window to address the impaired NVU starting from the first days to two weeks after SCI is identified. A number of lines of evidence including <i>in vivo</i> 2PM, assessment of NVU integrity, and neurobehavioral assessments point to the critical nature of targeting the NVU to enhance axonal preservation and regeneration after SCI. Continuous multifactorial therapy applications targeting the integrity of the NVU over the identified therapeutic window of opportunity appears promising to ameliorate functional vessel perseverance and the spinal cord's regenerative capacity.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotrauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/neu.2024.0233","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic spinal cord injury (SCI) is a devastating condition for which effective neuroregenerative and neuroreparative strategies are lacking. The post-traumatic disruption of the blood-spinal cord barrier (BSCB) as part of the neurovascular unit (NVU) is one major factor in the complex pathophysiology of SCI, which is associated with edema, inflammation, and cell death in the penumbra regions of the spinal cord adjacent to the lesion epicenter. Thus, the preservation of an intact NVU and vascular integrity to facilitate the regenerative capacity following SCI is a desirable therapeutic target. This study aims to identify a therapeutic window of opportunity for NVU repair after SCI by characterizing the timeframe of its post-traumatic disintegration and reintegration with implications for functional spinal cord recovery. Following thoracic clip-compression SCI or sham injury, adult C57BL/6J mice were followed up from one to 28 days. At one, three, seven, 14, and 28 days after SCI/sham, seven-Tesla magnetic resonance imaging (MRI), neurobehavioral analysis (Basso mouse scale, Tally subscore, CatWalk® gait analysis), and following sacrifice immunohistochemistry were performed, assessing vessel permeability via Evans blue (EVB) extravasation, (functional) vessel density, and NVU integrity. Thy1-yellow fluorescent protein+ mice were additionally implanted with a customized spinal window chamber and received longitudinal in vivo two-photon excitation imaging (2PM) with the injection of rhodamine-B-isothiocyanate-dextran for the combined imaging of axons and vasculature up to 14 days after SCI/sham injury. Post-traumatic edema formation as assessed by MRI volumetry peaked at one to three days after injury, while EVB permeability quantification revealed a thoroughly injured BSCB up to 14 days after SCI. Partial regeneration of functional vasculature via endogenous revascularization was detected after one to four weeks, however, with only 50-54% of existing vessels regaining functional perfusion. Longitudinal in vivo 2PM visualized the progressive degeneration of initially preserved spinal cord axons in the peri-traumatic zone after SCI while displaying a rarefication of functionally perfused vessels up to two weeks after injury. Neurobehavioral recovery started after one week but remained impaired over the whole observation period of four weeks after SCI. With this study, a therapeutic window to address the impaired NVU starting from the first days to two weeks after SCI is identified. A number of lines of evidence including in vivo 2PM, assessment of NVU integrity, and neurobehavioral assessments point to the critical nature of targeting the NVU to enhance axonal preservation and regeneration after SCI. Continuous multifactorial therapy applications targeting the integrity of the NVU over the identified therapeutic window of opportunity appears promising to ameliorate functional vessel perseverance and the spinal cord's regenerative capacity.

实验性脊髓损伤后神经血管单元修复治疗窗口的确定
创伤性脊髓损伤(SCI)是一种破坏性疾病,目前尚缺乏有效的神经再生和神经恢复策略。作为神经血管单元(NVU)一部分的血脊髓屏障(BSCB)在创伤后受到破坏,是导致脊髓损伤(SCI)复杂病理生理学的一个主要因素,它与邻近病灶中心的脊髓半影区的水肿、炎症和细胞死亡有关。因此,在脊髓损伤后保持完整的NVU和血管完整性以促进再生能力是一个理想的治疗目标。本研究旨在通过描述创伤后NVU解体和重新整合的时间框架,确定脊髓损伤后NVU修复的治疗机会窗口,从而对脊髓功能恢复产生影响。在胸椎夹压型 SCI 或假性损伤后,对成年 C57BL/6J 小鼠进行了 1 到 28 天的随访。在脊髓损伤/假性损伤后的1、3、7、14和28天,对小鼠进行七特斯拉磁共振成像(MRI)、神经行为分析(巴索小鼠量表、Tally子评分、CatWalk®步态分析),并在小鼠牺牲后进行免疫组化,通过埃文斯蓝(EVB)外渗评估血管通透性、(功能性)血管密度和NVU完整性。此外,还为Thy1-黄色荧光蛋白+小鼠植入了定制的脊髓开窗室,并在脊髓损伤/胫骨损伤后14天内注射罗丹明-B-异硫氰酸-右旋糖酐,进行纵向体内双光子激发成像(2PM),对轴突和血管进行联合成像。核磁共振成像容积评估显示,创伤后水肿的形成在损伤后一到三天达到高峰,而EVB通透性定量分析显示,BSCB在SCI损伤后14天内彻底损伤。然而,一至四周后,通过内源性血管再通检测到功能性血管的部分再生,仅有50-54%的现有血管恢复了功能性灌注。纵向活体 2PM 观察到,脊髓损伤后创伤周围区域最初保留的脊髓轴突逐渐退化,同时显示功能性灌注血管在损伤后两周内稀少。神经行为的恢复从一周后开始,但在脊髓损伤后四周的整个观察期内仍然存在障碍。通过这项研究,确定了从 SCI 后最初几天到两周开始治疗受损的 NVU 的治疗窗口。包括体内 2PM、NVU 完整性评估和神经行为评估在内的一系列证据表明,针对 NVU 的治疗对于增强 SCI 后轴突的保存和再生至关重要。在已确定的治疗机会窗口期,针对 NVU 完整性的持续性多因素疗法似乎有望改善功能性血管的持久性和脊髓的再生能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurotrauma
Journal of neurotrauma 医学-临床神经学
CiteScore
9.20
自引率
7.10%
发文量
233
审稿时长
3 months
期刊介绍: Journal of Neurotrauma is the flagship, peer-reviewed publication for reporting on the latest advances in both the clinical and laboratory investigation of traumatic brain and spinal cord injury. The Journal focuses on the basic pathobiology of injury to the central nervous system, while considering preclinical and clinical trials targeted at improving both the early management and long-term care and recovery of traumatically injured patients. This is the essential journal publishing cutting-edge basic and translational research in traumatically injured human and animal studies, with emphasis on neurodegenerative disease research linked to CNS trauma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信