PIKFYVE inhibition induces endosome- and lysosome-derived vacuole enlargement via ammonium accumulation.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Junsuke Uwada, Hitomi Nakazawa, Takeshi Kiyoi, Takashi Yazawa, Ikunobu Muramatsu, Takayoshi Masuoka
{"title":"PIKFYVE inhibition induces endosome- and lysosome-derived vacuole enlargement via ammonium accumulation.","authors":"Junsuke Uwada, Hitomi Nakazawa, Takeshi Kiyoi, Takashi Yazawa, Ikunobu Muramatsu, Takayoshi Masuoka","doi":"10.1242/jcs.262236","DOIUrl":null,"url":null,"abstract":"<p><p>FYVE-type zinc finger-containing phosphoinositide kinase (PIKFYVE), that is essential for PtdIns(3,5)P2 production, is an important regulator of lysosomal homeostasis. PIKFYVE dysfunction leads to cytoplasmic vacuolization; however, the underlying mechanism remains unknown. In this study, we explored the cause of vacuole enlargement upon PIKFYVE inhibition in DU145 prostate cancer cells. Enlargement of vacuoles by PIKFYVE inhibition required glutamine and its metabolism by glutaminases. Addition of ammonia, a metabolite of glutamine, was sufficient to enlarge vacuoles via PIKFYVE inhibition. Moreover, PIKFYVE inhibition led to intracellular ammonium accumulation. Endosome-lysosome permeabilization resulted in ammonium leakage from the cells, indicating ammonium accumulation in the endosomes and lysosomes. Ammonium accumulation and vacuole expansion were suppressed by the lysosomal lumen neutralization. It is therefore assumed that PIKFYVE inhibition interferes with the efflux of NH4+, which is protonated NH3 in the lysosomal lumen, leading to osmotic swelling of vacuoles. Notably, glutamine or ammonium is required for PIKFYVE inhibition-induced suppression of lysosomal function and autophagic flux. In conclusion, this study showed that PIKfyve inhibition disrupts lysosomal homeostasis via ammonium accumulation.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.262236","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

FYVE-type zinc finger-containing phosphoinositide kinase (PIKFYVE), that is essential for PtdIns(3,5)P2 production, is an important regulator of lysosomal homeostasis. PIKFYVE dysfunction leads to cytoplasmic vacuolization; however, the underlying mechanism remains unknown. In this study, we explored the cause of vacuole enlargement upon PIKFYVE inhibition in DU145 prostate cancer cells. Enlargement of vacuoles by PIKFYVE inhibition required glutamine and its metabolism by glutaminases. Addition of ammonia, a metabolite of glutamine, was sufficient to enlarge vacuoles via PIKFYVE inhibition. Moreover, PIKFYVE inhibition led to intracellular ammonium accumulation. Endosome-lysosome permeabilization resulted in ammonium leakage from the cells, indicating ammonium accumulation in the endosomes and lysosomes. Ammonium accumulation and vacuole expansion were suppressed by the lysosomal lumen neutralization. It is therefore assumed that PIKFYVE inhibition interferes with the efflux of NH4+, which is protonated NH3 in the lysosomal lumen, leading to osmotic swelling of vacuoles. Notably, glutamine or ammonium is required for PIKFYVE inhibition-induced suppression of lysosomal function and autophagic flux. In conclusion, this study showed that PIKfyve inhibition disrupts lysosomal homeostasis via ammonium accumulation.

抑制 PIKFYVE 可通过铵积累诱导内膜体和溶酶体衍生的液泡增大。
FYVE 型含锌指磷脂激酶(PIKFYVE)对 PtdIns(3,5)P2 的产生至关重要,是溶酶体稳态的重要调节因子。PIKFYVE 功能障碍会导致细胞质空泡化,但其潜在机制仍不清楚。在这项研究中,我们探讨了抑制 PIKFYVE 后 DU145 前列腺癌细胞空泡增大的原因。抑制 PIKFYVE 导致的液泡增大需要谷氨酰胺及其在谷氨酰胺酶作用下的代谢。加入谷氨酰胺的代谢产物氨足以通过抑制 PIKFYVE 使液泡增大。此外,抑制 PIKFYVE 会导致细胞内氨的积累。内膜体-溶酶体渗透导致铵从细胞中渗出,表明铵在内膜体和溶酶体中积累。溶酶体内腔中和抑制了铵的积累和液泡的扩大。因此推测 PIKFYVE 抑制干扰了 NH4+ 的外流,NH4+ 在溶酶体腔内质子化 NH3,导致液泡渗透膨胀。值得注意的是,谷氨酰胺或铵是 PIKFYVE 抑制引起的溶酶体功能和自噬通量抑制所必需的。总之,本研究表明,PIKfyve 抑制会通过铵积累破坏溶酶体的稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信