Construction and analysis of telomere-to-telomere genomes for 2 sweet oranges: Longhuihong and Newhall (Citrus sinensis).

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Lin Hong, Xin-Dong Xu, Lei Yang, Min Wang, Shuang Li, Haijian Yang, Si-Ying Ye, Ling-Ling Chen, Jia-Ming Song
{"title":"Construction and analysis of telomere-to-telomere genomes for 2 sweet oranges: Longhuihong and Newhall (Citrus sinensis).","authors":"Lin Hong, Xin-Dong Xu, Lei Yang, Min Wang, Shuang Li, Haijian Yang, Si-Ying Ye, Ling-Ling Chen, Jia-Ming Song","doi":"10.1093/gigascience/giae084","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sweet orange (Citrus sinensis Osbeck) is a fruit crop of high nutritional value that is widely consumed around the world. However, its susceptibility to low-temperature stress limits its cultivation and production in regions prone to frost damage, severely impacting the sustainable development of the sweet orange industry. Therefore, developing cold-resistant sweet orange varieties is of great necessity. Traditional hybrid breeding methods are not feasible due to the polyembryonic phenomenon in sweet oranges, necessitating the enhancement of its germplasm through molecular breeding. High-quality reference genomes are valuable for studying crop resistance to biotic and abiotic stresses. However, the lack of genomic resources for cold-resistant sweet orange varieties has hindered the progress in developing such varieties and researching their molecular mechanisms of cold resistance.</p><p><strong>Findings: </strong>This study integrated PacBio HiFi, ONT, Hi-C, and Illumina sequencing data to assemble telomere-to-telomere (T2T) reference genomes for the cold-resistant sweet orange mutant \"Longhuihong\" (Citrus sinensis [L.] Osb. cv. LHH) and its wild-type counterpart \"Newhall\" (C. sinensis [L.] Osb. cv. Newhall). Comprehensive evaluations based on multiple criteria revealed that both genomes exhibit high continuity, completeness, and accuracy. The genome sizes were 340.28 Mb and 346.33 Mb, with contig N50 of 39.31 Mb and 36.77 Mb, respectively. In total, 31,456 and 30,021 gene models were annotated in the respective genomes. Leveraging these assembled genomes, comparative genomics analyses were performed, elucidating the evolutionary history of the sweet orange genome. Moreover, the study identified 2,886 structural variants between the 2 genomes, with several SVs located in the upstream, downstream, or intronic regions of homologous genes known to be associated with cold resistance.</p><p><strong>Conclusions: </strong>The study de novo assembled 2 T2T reference genomes of sweet orange varieties exhibiting different levels of cold tolerance. These genomes serve as valuable foundational resources for genomic research and molecular breeding aimed at enhancing cold tolerance in sweet oranges. Additionally, they expand the existing repository of reference genomes and sequencing data resources for C. sinensis. Moreover, these genomes provide a critical data foundation for comparative genomics analyses across different plant species.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590112/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae084","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sweet orange (Citrus sinensis Osbeck) is a fruit crop of high nutritional value that is widely consumed around the world. However, its susceptibility to low-temperature stress limits its cultivation and production in regions prone to frost damage, severely impacting the sustainable development of the sweet orange industry. Therefore, developing cold-resistant sweet orange varieties is of great necessity. Traditional hybrid breeding methods are not feasible due to the polyembryonic phenomenon in sweet oranges, necessitating the enhancement of its germplasm through molecular breeding. High-quality reference genomes are valuable for studying crop resistance to biotic and abiotic stresses. However, the lack of genomic resources for cold-resistant sweet orange varieties has hindered the progress in developing such varieties and researching their molecular mechanisms of cold resistance.

Findings: This study integrated PacBio HiFi, ONT, Hi-C, and Illumina sequencing data to assemble telomere-to-telomere (T2T) reference genomes for the cold-resistant sweet orange mutant "Longhuihong" (Citrus sinensis [L.] Osb. cv. LHH) and its wild-type counterpart "Newhall" (C. sinensis [L.] Osb. cv. Newhall). Comprehensive evaluations based on multiple criteria revealed that both genomes exhibit high continuity, completeness, and accuracy. The genome sizes were 340.28 Mb and 346.33 Mb, with contig N50 of 39.31 Mb and 36.77 Mb, respectively. In total, 31,456 and 30,021 gene models were annotated in the respective genomes. Leveraging these assembled genomes, comparative genomics analyses were performed, elucidating the evolutionary history of the sweet orange genome. Moreover, the study identified 2,886 structural variants between the 2 genomes, with several SVs located in the upstream, downstream, or intronic regions of homologous genes known to be associated with cold resistance.

Conclusions: The study de novo assembled 2 T2T reference genomes of sweet orange varieties exhibiting different levels of cold tolerance. These genomes serve as valuable foundational resources for genomic research and molecular breeding aimed at enhancing cold tolerance in sweet oranges. Additionally, they expand the existing repository of reference genomes and sequencing data resources for C. sinensis. Moreover, these genomes provide a critical data foundation for comparative genomics analyses across different plant species.

构建和分析两种甜橙的端粒-端粒基因组:龙汇红和纽荷尔(Citrus sinensis)。
背景:甜橙(Citrus sinensis Osbeck)是一种营养价值很高的水果作物,在世界各地被广泛食用。然而,甜橙易受低温胁迫的影响,限制了其在易受冻害地区的种植和生产,严重影响了甜橙产业的可持续发展。因此,开发抗寒甜橙品种十分必要。由于甜橙的多胚现象,传统的杂交育种方法并不可行,因此必须通过分子育种来提高其种质。高质量的参考基因组对于研究作物对生物和非生物胁迫的抗性非常有价值。然而,抗寒甜橙品种基因组资源的缺乏阻碍了此类品种的开发及其抗寒分子机制的研究进展:本研究整合了 PacBio HiFi、ONT、Hi-C 和 Illumina 测序数据,为抗寒甜橙突变体 "龙会红"(Citrus sinensis [L.] Osb.基于多种标准的综合评估显示,这两个基因组都表现出很高的连续性、完整性和准确性。基因组大小分别为 340.28 Mb 和 346.33 Mb,等位基因 N50 分别为 39.31 Mb 和 36.77 Mb。两个基因组中分别注释了 31,456 和 30,021 个基因模型。利用这些组装好的基因组,进行了比较基因组学分析,阐明了甜橙基因组的进化历史。此外,该研究还发现了2个基因组之间的2886个结构变异,其中几个SV位于已知与抗寒性相关的同源基因的上游、下游或内含区:这项研究从新组装了两个具有不同耐寒性的甜橙品种的 T2T 参考基因组。这些基因组为旨在提高甜橙耐寒性的基因组研究和分子育种提供了宝贵的基础资源。此外,它们还扩大了现有的中华甜橙参考基因组和测序数据资源库。此外,这些基因组还为不同植物物种间的比较基因组学分析提供了重要的数据基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信