{"title":"Gpr54 deletion accelerates hair cycle and hair regeneration.","authors":"Weili Xia, Caibing Wang, Biao Guo, Zexin Tang, Xiyun Ye, Yongyan Dang","doi":"10.1038/s44319-024-00327-y","DOIUrl":null,"url":null,"abstract":"<p><p>GPR54, or KiSS-1R (Kisspeptin receptor), is key in puberty initiation and tumor metastasis prevention, but its role on hair follicles remains unclear. Our study shows that Gpr54 knockout (KO) accelerates hair cycle, synchronized hair regeneration and transplanted hair growth in mice. In Gpr54 KO mice, DPC (dermal papilla cell) activity is enhanced, with elevated expression of Wnts, VEGF, and IGF-1, which stimulate HFSCs. Gpr54 deletion also raises the number of CD34+ and Lgr5+ HFSCs. The Gpr54 inhibitor, kisspeptin234, promotes hair shaft growth in cultured mouse hair follicles and boosts synchronized hair regeneration in vivo. Mechanistically, Gpr54 deletion suppresses NFATC3 expression in DPCs and HFSCs, and decreases levels of SFRP1, a Wnt inhibitor. It also activates the Wnt/β-catenin pathway, promoting β-catenin nuclear localization and upregulating target genes such as Lef1 and ALP. Our findings suggest that Gpr54 deletion may accelerate the hair cycle and promote hair regeneration in mice by regulating the NAFTc3-SFRP1-Wnt signaling pathway. These findings suggest that Gpr54 could be a possible target for future hair loss treatments.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00327-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
GPR54, or KiSS-1R (Kisspeptin receptor), is key in puberty initiation and tumor metastasis prevention, but its role on hair follicles remains unclear. Our study shows that Gpr54 knockout (KO) accelerates hair cycle, synchronized hair regeneration and transplanted hair growth in mice. In Gpr54 KO mice, DPC (dermal papilla cell) activity is enhanced, with elevated expression of Wnts, VEGF, and IGF-1, which stimulate HFSCs. Gpr54 deletion also raises the number of CD34+ and Lgr5+ HFSCs. The Gpr54 inhibitor, kisspeptin234, promotes hair shaft growth in cultured mouse hair follicles and boosts synchronized hair regeneration in vivo. Mechanistically, Gpr54 deletion suppresses NFATC3 expression in DPCs and HFSCs, and decreases levels of SFRP1, a Wnt inhibitor. It also activates the Wnt/β-catenin pathway, promoting β-catenin nuclear localization and upregulating target genes such as Lef1 and ALP. Our findings suggest that Gpr54 deletion may accelerate the hair cycle and promote hair regeneration in mice by regulating the NAFTc3-SFRP1-Wnt signaling pathway. These findings suggest that Gpr54 could be a possible target for future hair loss treatments.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.