Parisa Mollaei, Danush Sadasivam, Chakradhar Guntuboina, Amir Barati Farimani
{"title":"IDP-Bert: Predicting Properties of Intrinsically Disordered Proteins Using Large Language Models.","authors":"Parisa Mollaei, Danush Sadasivam, Chakradhar Guntuboina, Amir Barati Farimani","doi":"10.1021/acs.jpcb.4c02507","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsically disordered Proteins (IDPs) constitute a large and structureless class of proteins with significant functions. The existence of IDPs challenges the conventional notion that the biological functions of proteins rely on their three-dimensional structures. Despite lacking well-defined spatial arrangements, they exhibit diverse biological functions, influencing cellular processes and shedding light on disease mechanisms. However, it is expensive to run experiments or simulations to characterize this class of proteins. Consequently, we designed an ML model that relies solely on amino acid sequences. In this study, we introduce the IDP-Bert model, a deep-learning architecture leveraging Transformers and Protein Language Models to map sequences directly to IDP properties. Our experiments demonstrate accurate predictions of IDP properties, including Radius of Gyration, end-to-end Decorrelation Time, and Heat Capacity.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"12030-12037"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c02507","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Intrinsically disordered Proteins (IDPs) constitute a large and structureless class of proteins with significant functions. The existence of IDPs challenges the conventional notion that the biological functions of proteins rely on their three-dimensional structures. Despite lacking well-defined spatial arrangements, they exhibit diverse biological functions, influencing cellular processes and shedding light on disease mechanisms. However, it is expensive to run experiments or simulations to characterize this class of proteins. Consequently, we designed an ML model that relies solely on amino acid sequences. In this study, we introduce the IDP-Bert model, a deep-learning architecture leveraging Transformers and Protein Language Models to map sequences directly to IDP properties. Our experiments demonstrate accurate predictions of IDP properties, including Radius of Gyration, end-to-end Decorrelation Time, and Heat Capacity.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.