Algebraic structures behind the Yang–Baxterization process

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
C. Özdemir, I. Gahramanov
{"title":"Algebraic structures behind the Yang–Baxterization process","authors":"C. Özdemir,&nbsp;I. Gahramanov","doi":"10.1134/S0040577924110114","DOIUrl":null,"url":null,"abstract":"<p> We discuss the process of Yang–Baxterization in representations of the braid group. We discuss the role played by <span>\\(n\\)</span>-CB algebras in Yang–Baxterization. We present diagrams depicting the defining relations for the <span>\\(4\\)</span>-CB algebras. These relations are illustrated using the isomorphism between the general free algebra generated by <span>\\(\\{1\\}\\)</span>, <span>\\(\\{E_i\\}\\)</span>, and <span>\\(\\{G_i\\}\\)</span> (the generators of the Birman–Murakami–Wenzl algebra) and Kauffman’s tangle algebra. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 2","pages":"1959 - 1980"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924110114","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the process of Yang–Baxterization in representations of the braid group. We discuss the role played by \(n\)-CB algebras in Yang–Baxterization. We present diagrams depicting the defining relations for the \(4\)-CB algebras. These relations are illustrated using the isomorphism between the general free algebra generated by \(\{1\}\), \(\{E_i\}\), and \(\{G_i\}\) (the generators of the Birman–Murakami–Wenzl algebra) and Kauffman’s tangle algebra.

杨-巴克斯特化过程背后的代数结构
我们讨论了辫状群表征中的杨-巴克斯特化过程。我们讨论了 \(n\)-CB 对象在杨-巴克斯特化中扮演的角色。我们用图表描述了 \(4\)-CB 结构的定义关系。我们使用由 \(\{1\}\)、\(\{E_i\}\)和\(\{G_i\}\)(比尔曼-村上-温茨尔代数的生成子)产生的一般自由代数和考夫曼的纠缠代数之间的同构关系来说明这些关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信