Refinements and Extensions of Some Strong Duality Theorems in Conic Linear Programming

IF 0.3 Q4 MATHEMATICS
Nguyen Ngoc Luan, Nguyen Dong Yen
{"title":"Refinements and Extensions of Some Strong Duality Theorems in Conic Linear Programming","authors":"Nguyen Ngoc Luan,&nbsp;Nguyen Dong Yen","doi":"10.1007/s40306-024-00543-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish a series of new results on strong duality and solution existence for conic linear programs in locally convex Hausdorff topological vector spaces and finite-dimensional Euclidean spaces. Namely, under certain regularity conditions based on quasi-relative interiors of convex sets, we prove that if one problem in the dual pair consisting of a primal program and its dual has a solution, then the other problem also has a solution, and the optimal values of the problems are equal. In addition, we show that if the cones are generalized polyhedral convex, then the regularity conditions can be omitted. Moreover, if the spaces are finite-dimensional and the ordering cones are closed convex, then instead of the solution existence condition, it suffices to require the finiteness of the optimal value. The present paper complements our recent research work [Luan, N.N., Yen, N.D.: <i>Strong duality and solution existence under minimal assumptions in conic linear programming</i>. J. Optim. Theory Appl. (https://doi.org/10.1007/s10957-023-02318-w)].</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"49 3","pages":"545 - 561"},"PeriodicalIF":0.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-024-00543-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish a series of new results on strong duality and solution existence for conic linear programs in locally convex Hausdorff topological vector spaces and finite-dimensional Euclidean spaces. Namely, under certain regularity conditions based on quasi-relative interiors of convex sets, we prove that if one problem in the dual pair consisting of a primal program and its dual has a solution, then the other problem also has a solution, and the optimal values of the problems are equal. In addition, we show that if the cones are generalized polyhedral convex, then the regularity conditions can be omitted. Moreover, if the spaces are finite-dimensional and the ordering cones are closed convex, then instead of the solution existence condition, it suffices to require the finiteness of the optimal value. The present paper complements our recent research work [Luan, N.N., Yen, N.D.: Strong duality and solution existence under minimal assumptions in conic linear programming. J. Optim. Theory Appl. (https://doi.org/10.1007/s10957-023-02318-w)].

圆锥线性规划中若干强对偶定理的完善与扩展
本文建立了一系列关于局部凸豪斯多夫拓扑向量空间和有限维欧几里得空间中圆锥线性程序的强对偶性和解存在性的新结果。也就是说,在某些基于凸集准相对内部的正则性条件下,我们证明了如果由主程序及其对偶组成的对偶对中的一个问题有解,那么另一个问题也有解,并且问题的最优值相等。此外,我们还证明,如果锥形是广义多面体凸形,则可以省略正则性条件。此外,如果空间是有限维的,且排序锥是闭凸的,那么只需要求最优值的有限性,而无需解的存在性条件。本文补充了我们最近的研究工作 [Luan, N.N., Yen, N.D.:圆锥线性规划中最小假设下的强对偶性和解的存在性。J. Optim.Theory Appl. (https://doi.org/10.1007/s10957-023-02318-w)].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
23
期刊介绍: Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信