Numerical and experimental study of the consolidation of continuous carbon fiber thermoplastics made by robotic 3D printing

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Seyed Miri, Jash Rana, Kazem Fayazbakhsh, Chady Ghnatios
{"title":"Numerical and experimental study of the consolidation of continuous carbon fiber thermoplastics made by robotic 3D printing","authors":"Seyed Miri,&nbsp;Jash Rana,&nbsp;Kazem Fayazbakhsh,&nbsp;Chady Ghnatios","doi":"10.1007/s12289-024-01865-5","DOIUrl":null,"url":null,"abstract":"<div><p>The 3D printing of continuous carbon fiber reinforced thermoplastics can widen their applications and allow the construction, on the fly, of complex composite parts. In this work, we model the consolidation of tapes through deformation and resin flow during robotic 3D printing of continuous carbon fiber low-melt poly aryl ether ketone (CF-LM PAEK) thermoplastics. Unidirectional tensile specimens per ASTM D3039-17 with a modified thickness (three tapes and two layers) are fabricated. The modeling effort of the squeeze flow involved in the process uses the anisotropic fluid model known as the Ericksen flow model. The proper generalized decomposition is used to simulate the tows deformation and the fluid flow while using an in-plane-out-of-plane decomposition. The modeling is validated with cross-section microscopy of the 3D printed specimen. Cross-ply and staggered tape deposition are explored as well.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01865-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The 3D printing of continuous carbon fiber reinforced thermoplastics can widen their applications and allow the construction, on the fly, of complex composite parts. In this work, we model the consolidation of tapes through deformation and resin flow during robotic 3D printing of continuous carbon fiber low-melt poly aryl ether ketone (CF-LM PAEK) thermoplastics. Unidirectional tensile specimens per ASTM D3039-17 with a modified thickness (three tapes and two layers) are fabricated. The modeling effort of the squeeze flow involved in the process uses the anisotropic fluid model known as the Ericksen flow model. The proper generalized decomposition is used to simulate the tows deformation and the fluid flow while using an in-plane-out-of-plane decomposition. The modeling is validated with cross-section microscopy of the 3D printed specimen. Cross-ply and staggered tape deposition are explored as well.

Abstract Image

机器人三维打印技术制造的连续碳纤维热塑性塑料固结的数值和实验研究
连续碳纤维增强热塑性塑料的三维打印技术可拓宽其应用领域,并可快速制造复杂的复合材料部件。在这项工作中,我们模拟了在机器人三维打印连续碳纤维低熔聚芳基醚酮(CF-LM PAEK)热塑性塑料的过程中,通过变形和树脂流动对带子进行固结的情况。根据 ASTM D3039-17,制作了具有改良厚度(三带两层)的单向拉伸试样。工艺中涉及的挤压流建模工作使用了各向异性流体模型,即埃里克森流动模型。使用适当的广义分解来模拟丝束变形和流体流动,同时使用平面内-平面外分解。该模型通过 3D 打印试样的横截面显微镜进行了验证。此外,还对交叉层和交错带沉积进行了探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信