Yishu Jiang, Elsy El Khoury, Aidan T. Pezacki, Naixin Qian, Miku Oi, Laura Torrente, Sophia G. Miller, Martina Ralle, Gina M. DeNicola, Wei Min, Christopher J. Chang
{"title":"An Activity-Based Sensing Approach to Multiplex Mapping of Labile Copper Pools by Stimulated Raman Scattering","authors":"Yishu Jiang, Elsy El Khoury, Aidan T. Pezacki, Naixin Qian, Miku Oi, Laura Torrente, Sophia G. Miller, Martina Ralle, Gina M. DeNicola, Wei Min, Christopher J. Chang","doi":"10.1021/jacs.4c06296","DOIUrl":null,"url":null,"abstract":"Molecular imaging with analyte-responsive probes offers a powerful chemical approach to studying biological processes. Many reagents for bioimaging employ a fluorescence readout, but the relatively broad emission bands of this modality and the need to alter the chemical structure of the fluorophore for different signal colors can potentially limit multiplex imaging. Here, we report a generalizable approach to multiplex analyte imaging by leveraging the comparably narrow spectral signatures of stimulated Raman scattering (SRS) in activity-based sensing (ABS) mode. We illustrate this concept with two copper Raman probes (CRPs), <b>CRP2181</b> and <b>CRP2153.2</b>, that react selectively with loosely bound Cu(I/II) and Cu(II) ions, respectively, termed the labile copper pool, through copper-directed acyl imidazole (CDAI) chemistry. These reagents label proximal proteins in a copper-dependent manner using a dye scaffold bearing a <sup>13</sup>C≡N or <sup>13</sup>C≡<sup>15</sup>N isotopic SRS tag with nearly identical physiochemical properties in terms of shape and size. SRS imaging with the <b>CRP</b> reagents enables duplex monitoring of changes in intracellular labile Cu(I) and Cu(II) pools upon exogenous copper supplementation or copper depletion or genetic perturbations to copper transport proteins. Moreover, CRP imaging reveals reciprocal increases in labile Cu(II) pools upon decreases in activity of the antioxidant response nuclear factor-erythroid 2-related factor 2 (NRF2) in cellular models of lung adenocarcinoma. By showcasing the use of narrow-bandwidth ABS probes for multiplex imaging of copper pools in different oxidation states and identifying alterations in labile metal nutrient pools in cancer, this work establishes a foundation for broader SRS applications in analyte-responsive imaging in biological systems.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"247 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c06296","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular imaging with analyte-responsive probes offers a powerful chemical approach to studying biological processes. Many reagents for bioimaging employ a fluorescence readout, but the relatively broad emission bands of this modality and the need to alter the chemical structure of the fluorophore for different signal colors can potentially limit multiplex imaging. Here, we report a generalizable approach to multiplex analyte imaging by leveraging the comparably narrow spectral signatures of stimulated Raman scattering (SRS) in activity-based sensing (ABS) mode. We illustrate this concept with two copper Raman probes (CRPs), CRP2181 and CRP2153.2, that react selectively with loosely bound Cu(I/II) and Cu(II) ions, respectively, termed the labile copper pool, through copper-directed acyl imidazole (CDAI) chemistry. These reagents label proximal proteins in a copper-dependent manner using a dye scaffold bearing a 13C≡N or 13C≡15N isotopic SRS tag with nearly identical physiochemical properties in terms of shape and size. SRS imaging with the CRP reagents enables duplex monitoring of changes in intracellular labile Cu(I) and Cu(II) pools upon exogenous copper supplementation or copper depletion or genetic perturbations to copper transport proteins. Moreover, CRP imaging reveals reciprocal increases in labile Cu(II) pools upon decreases in activity of the antioxidant response nuclear factor-erythroid 2-related factor 2 (NRF2) in cellular models of lung adenocarcinoma. By showcasing the use of narrow-bandwidth ABS probes for multiplex imaging of copper pools in different oxidation states and identifying alterations in labile metal nutrient pools in cancer, this work establishes a foundation for broader SRS applications in analyte-responsive imaging in biological systems.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.