Comparative analysis of dimensionality reduction techniques for EEG-based emotional state classification.

American journal of neurodegenerative disease Pub Date : 2024-10-25 eCollection Date: 2024-01-01 DOI:10.62347/ZWRY8401
Seyed-Ali Sadegh-Zadeh, Nasrin Sadeghzadeh, Ommolbanin Soleimani, Saeed Shiry Ghidary, Sobhan Movahedi, Seyed-Yaser Mousavi
{"title":"Comparative analysis of dimensionality reduction techniques for EEG-based emotional state classification.","authors":"Seyed-Ali Sadegh-Zadeh, Nasrin Sadeghzadeh, Ommolbanin Soleimani, Saeed Shiry Ghidary, Sobhan Movahedi, Seyed-Yaser Mousavi","doi":"10.62347/ZWRY8401","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study is to evaluate the impact of various dimensionality reduction methods, including principal component analysis (PCA), Laplacian score, and Chi-square feature selection, on the classification performance of an electroencephalogram (EEG) dataset.</p><p><strong>Methods: </strong>We applied dimensionality reduction techniques, including PCA, Laplacian score, and Chi-square feature selection, and assessed their impact on the classification performance of EEG data using linear regression, K-nearest neighbour (KNN), and Naive Bayes classifiers. The models were evaluated in terms of their classification accuracy and computational efficiency.</p><p><strong>Results: </strong>Our findings suggest that all dimensionality reduction strategies generally improved or maintained classification accuracy while reducing the computational load. Notably, PCA and Autofeat techniques led to increased accuracy for the models.</p><p><strong>Conclusions: </strong>The use of dimensionality reduction techniques can enhance EEG data classification by reducing computational demands without compromising accuracy. These results demonstrate the potential for these techniques to be applied in scenarios where both computational efficiency and high accuracy are desired. The code used in this study is available at https://github.com/movahedso/Emotion-analysis.</p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"13 4","pages":"23-33"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578865/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of neurodegenerative disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/ZWRY8401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The aim of this study is to evaluate the impact of various dimensionality reduction methods, including principal component analysis (PCA), Laplacian score, and Chi-square feature selection, on the classification performance of an electroencephalogram (EEG) dataset.

Methods: We applied dimensionality reduction techniques, including PCA, Laplacian score, and Chi-square feature selection, and assessed their impact on the classification performance of EEG data using linear regression, K-nearest neighbour (KNN), and Naive Bayes classifiers. The models were evaluated in terms of their classification accuracy and computational efficiency.

Results: Our findings suggest that all dimensionality reduction strategies generally improved or maintained classification accuracy while reducing the computational load. Notably, PCA and Autofeat techniques led to increased accuracy for the models.

Conclusions: The use of dimensionality reduction techniques can enhance EEG data classification by reducing computational demands without compromising accuracy. These results demonstrate the potential for these techniques to be applied in scenarios where both computational efficiency and high accuracy are desired. The code used in this study is available at https://github.com/movahedso/Emotion-analysis.

基于脑电图的情绪状态分类的降维技术比较分析。
研究目的本研究的目的是评估各种降维方法(包括主成分分析(PCA)、拉普拉斯分数和奇偶特征选择)对脑电图(EEG)数据集分类性能的影响:我们应用了降维技术,包括 PCA、Laplacian score 和 Chi-square 特征选择,并使用线性回归、K-近邻(KNN)和 Naive Bayes 分类器评估了它们对脑电图数据分类性能的影响。我们从分类准确性和计算效率的角度对这些模型进行了评估:结果:我们的研究结果表明,所有降维策略在降低计算负荷的同时,普遍提高或保持了分类准确性。值得注意的是,PCA 和 Autofeat 技术提高了模型的准确性:结论:使用降维技术可以在不影响准确性的前提下减少计算量,从而提高脑电图数据分类的准确性。这些结果表明,这些技术有潜力应用于既需要计算效率又需要高准确度的场合。本研究使用的代码可在 https://github.com/movahedso/Emotion-analysis 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信