Anna M Davies, Tam T T Bui, Raúl Pacheco-Gómez, Susan K Vester, Andrew J Beavil, Hannah J Gould, Brian J Sutton, James M McDonnell
{"title":"The Crystal Structure of Human IgD-Fc Reveals Unexpected Differences With Other Antibody Isotypes.","authors":"Anna M Davies, Tam T T Bui, Raúl Pacheco-Gómez, Susan K Vester, Andrew J Beavil, Hannah J Gould, Brian J Sutton, James M McDonnell","doi":"10.1002/prot.26771","DOIUrl":null,"url":null,"abstract":"<p><p>Of the five human antibody isotypes, the function of IgD is the least well-understood, although various studies point to a role for IgD in mucosal immunity. IgD is also the least well structurally characterized isotype. Until recently, when crystal structures were reported for the IgD Fab, the only structural information available was a model for intact IgD based on solution scattering data. We now report the crystal structure of human IgD-Fc solved at 3.0 Å resolution. Although similar in overall architecture to other human isotypes, IgD-Fc displays markedly different orientations of the Cδ3 domains in the Cδ3 domain dimer and the lowest interface area of all the human isotypes. The nature of the residues that form the dimer interface also differs from those conserved in the other isotypes. By contrast, the interface between the Cδ2 and Cδ3 domains in each chain is the largest among the human isotypes. This interface is characterized by two binding pockets, not seen in other isotypes, and points to a potential role for the Cδ2/Cδ3 interface in stabilizing the IgD-Fc homodimer. We investigated the thermal stability of IgD-Fc, alone and in the context of an intact IgD antibody, and found that IgD-Fc unfolds in a single transition. Human IgD-Fc clearly has unique structural features not seen in the other human isotypes, and comparison with other mammalian IgD sequences suggests that these unique features might be widely conserved.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26771","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Of the five human antibody isotypes, the function of IgD is the least well-understood, although various studies point to a role for IgD in mucosal immunity. IgD is also the least well structurally characterized isotype. Until recently, when crystal structures were reported for the IgD Fab, the only structural information available was a model for intact IgD based on solution scattering data. We now report the crystal structure of human IgD-Fc solved at 3.0 Å resolution. Although similar in overall architecture to other human isotypes, IgD-Fc displays markedly different orientations of the Cδ3 domains in the Cδ3 domain dimer and the lowest interface area of all the human isotypes. The nature of the residues that form the dimer interface also differs from those conserved in the other isotypes. By contrast, the interface between the Cδ2 and Cδ3 domains in each chain is the largest among the human isotypes. This interface is characterized by two binding pockets, not seen in other isotypes, and points to a potential role for the Cδ2/Cδ3 interface in stabilizing the IgD-Fc homodimer. We investigated the thermal stability of IgD-Fc, alone and in the context of an intact IgD antibody, and found that IgD-Fc unfolds in a single transition. Human IgD-Fc clearly has unique structural features not seen in the other human isotypes, and comparison with other mammalian IgD sequences suggests that these unique features might be widely conserved.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.