Genomic insights into the alphaproteobacterium Georhizobium sp. MAB10 revealed a pathway of Mn(II) oxidation-coupled anoxygenic photoautotrophy: a novel understanding of the biotic process in deep-sea ferromanganese nodule formation.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-01-08 Epub Date: 2024-11-25 DOI:10.1128/mbio.02675-24
Xiuli Xu, Litao Zhang, Fuhang Song, Guoliang Zhang, Linlin Ma, Na Yang
{"title":"Genomic insights into the alphaproteobacterium <i>Georhizobium</i> sp. MAB10 revealed a pathway of Mn(II) oxidation-coupled anoxygenic photoautotrophy: a novel understanding of the biotic process in deep-sea ferromanganese nodule formation.","authors":"Xiuli Xu, Litao Zhang, Fuhang Song, Guoliang Zhang, Linlin Ma, Na Yang","doi":"10.1128/mbio.02675-24","DOIUrl":null,"url":null,"abstract":"<p><p>Under light conditions, Mn(II) facilitates the photoautotrophic growth of <i>Georhizobium</i> sp. MAB10, a strain derived from deep-sea ferromanganese nodules, along with the generation of dark Mn oxides (β-MnO<sub>2</sub>). This study investigated the genetic basis of Mn(II) oxidation-coupled anoxygenic photoautotrophy using genome sequencing and biochemical assays of strain MAB10. Preliminary results indicated the presence of genes encoding a functional pheophytin-quinone-type photosynthetic reaction center and a putative key enzyme for Mn(II) oxidation, namely FtsP/CotA-like multicopper oxidase GE001273. Under light conditions, Mn(II) significantly reduced the respiration rate and elevated the intracellular NADH/NAD<sub>total</sub> ratio. This suggested that Mn(II)-derived electrons entered the cyclic photophosphorylation, partially replacing the oxidative phosphorylation for ATP production and enhancing the electron flow to complex I for NADH generation. <i>In vitro</i> enzymatic studies confirmed that GE001273 was a catalyst for Mn(II) oxidation in the outer membrane. Comprehensive genomic analyses of respiration and carbon and nitrogen metabolism revealed the high ecophysiological flexibility of strain MAB10 during Mn(II) oxidation-coupled anoxygenic photoautotrophy in deep-sea habitats. These analyses provided insights into bacterial Mn(II) oxidation-coupled anoxygenic photoautotrophy during microorganism-mediated deep-sea ferromanganese nodule formation.</p><p><strong>Importance: </strong>Microorganisms are believed to participate in the biotic process of deep-sea ferromanganese nodule formation [Mn(II) oxidation]. Despite the multitude of studies and reviews focusing on the details of Mn(II) oxidation catalyzed by diverse heterotrophs, the mechanistic roles of manganese chemolithotrophs from ferromanganese nodules remain unclear. We demonstrate that strain <i>Georhizobium</i> sp. MAB10 can utilize Mn(II)-derived electrons for photoautotrophic growth, with concomitant generation of dark β-MnO<sub>2</sub> type Mn oxides under near-infrared light condition. This study uses genomic and biochemical assays to explore the genetic basis of Mn(II) oxidation-coupled anoxygenic photoautotrophy. The comprehensive analyses of respiration and carbon and nitrogen metabolism further elucidated the high ecophysiological flexibility of strain MAB10 in deep-sea habits. These findings expand our understanding of the role of chemolithotrophs in deep-sea ferromanganese nodule formation and justify further investigations into the molecular basis for Mn(II) oxidation-coupled anoxygenic photoautotrophy.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0267524"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.02675-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Under light conditions, Mn(II) facilitates the photoautotrophic growth of Georhizobium sp. MAB10, a strain derived from deep-sea ferromanganese nodules, along with the generation of dark Mn oxides (β-MnO2). This study investigated the genetic basis of Mn(II) oxidation-coupled anoxygenic photoautotrophy using genome sequencing and biochemical assays of strain MAB10. Preliminary results indicated the presence of genes encoding a functional pheophytin-quinone-type photosynthetic reaction center and a putative key enzyme for Mn(II) oxidation, namely FtsP/CotA-like multicopper oxidase GE001273. Under light conditions, Mn(II) significantly reduced the respiration rate and elevated the intracellular NADH/NADtotal ratio. This suggested that Mn(II)-derived electrons entered the cyclic photophosphorylation, partially replacing the oxidative phosphorylation for ATP production and enhancing the electron flow to complex I for NADH generation. In vitro enzymatic studies confirmed that GE001273 was a catalyst for Mn(II) oxidation in the outer membrane. Comprehensive genomic analyses of respiration and carbon and nitrogen metabolism revealed the high ecophysiological flexibility of strain MAB10 during Mn(II) oxidation-coupled anoxygenic photoautotrophy in deep-sea habitats. These analyses provided insights into bacterial Mn(II) oxidation-coupled anoxygenic photoautotrophy during microorganism-mediated deep-sea ferromanganese nodule formation.

Importance: Microorganisms are believed to participate in the biotic process of deep-sea ferromanganese nodule formation [Mn(II) oxidation]. Despite the multitude of studies and reviews focusing on the details of Mn(II) oxidation catalyzed by diverse heterotrophs, the mechanistic roles of manganese chemolithotrophs from ferromanganese nodules remain unclear. We demonstrate that strain Georhizobium sp. MAB10 can utilize Mn(II)-derived electrons for photoautotrophic growth, with concomitant generation of dark β-MnO2 type Mn oxides under near-infrared light condition. This study uses genomic and biochemical assays to explore the genetic basis of Mn(II) oxidation-coupled anoxygenic photoautotrophy. The comprehensive analyses of respiration and carbon and nitrogen metabolism further elucidated the high ecophysiological flexibility of strain MAB10 in deep-sea habits. These findings expand our understanding of the role of chemolithotrophs in deep-sea ferromanganese nodule formation and justify further investigations into the molecular basis for Mn(II) oxidation-coupled anoxygenic photoautotrophy.

MAB10 的基因组研究揭示了锰(II)氧化耦合缺氧光自养的途径:对深海铁锰结核形成过程中生物过程的新认识。
在光照条件下,锰(II)有助于源自深海锰铁结核的 Georhizobium sp.本研究通过对 MAB10 菌株进行基因组测序和生化检测,研究了锰(II)氧化耦合缺氧光能自养的遗传基础。初步结果表明,存在编码功能性叶绿素-醌型光合反应中心的基因和一种推测的 Mn(II)氧化关键酶,即 FtsP/CotA-like 多铜氧化酶 GE001273。在光照条件下,Mn(II)能显著降低呼吸速率,并提高细胞内 NADH/NADtotal 的比率。这表明 Mn(II)产生的电子进入了循环光磷酸化过程,部分取代了氧化磷酸化产生 ATP,并增强了电子流到复合体 I 产生 NADH 的能力。体外酶学研究证实,GE001273 是外膜中 Mn(II)氧化的催化剂。呼吸作用和碳氮代谢的综合基因组分析表明,在深海栖息地锰(II)氧化耦合缺氧光营养过程中,菌株 MAB10 具有高度的生态生理学灵活性。这些分析提供了对微生物介导的深海铁锰结核形成过程中细菌锰(II)氧化耦合缺氧光自养的见解:微生物被认为参与了深海铁锰结核形成的生物过程[锰(II)氧化]。尽管有大量研究和综述关注各种异养生物催化锰(II)氧化的细节,但锰铁结核中的锰化石异养生物的机理作用仍不清楚。我们证明了 Georhizobium sp. MAB10 菌株可以利用 Mn(II)产生的电子进行光自养生长,并在近红外光条件下同时生成暗β-MnO2 型锰氧化物。本研究利用基因组学和生化检测方法探索了 Mn(II)氧化耦合缺氧光自养的遗传基础。对呼吸作用和碳氮代谢的综合分析进一步阐明了菌株 MAB10 在深海习性中的高度生态生理灵活性。这些发现拓展了我们对化石营养体在深海铁锰结核形成中的作用的认识,并为进一步研究锰(II)氧化耦合氧光自养的分子基础提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信