Shaolong Jiang, Erding Zhao, Xi Zhang, Jin Yang, Qian Liu, Jiageng Liu, Yu-Fei Lang, Qishuo Yang, Bojian Zhou, Yu-Qing Zhao, Yilin Sun, Fuhai Su, Fuchen Hou, Guang Yang
{"title":"Chemical Vapor Deposited Thin Palladium Sulfide Crystals for Highly Photoresponsive Photodetector","authors":"Shaolong Jiang, Erding Zhao, Xi Zhang, Jin Yang, Qian Liu, Jiageng Liu, Yu-Fei Lang, Qishuo Yang, Bojian Zhou, Yu-Qing Zhao, Yilin Sun, Fuhai Su, Fuchen Hou, Guang Yang","doi":"10.1002/adom.202401624","DOIUrl":null,"url":null,"abstract":"<p>Nonlayered palladium sulfide (PdS) is of interest due to its rich physical properties and promising applications in optoelectronic devices. However, the growth of thin nonlayered PdS remains challenging because of its intrinsic 3D lattice structure. Here, the first demonstration of the direct synthesis of thin rectangular PdS ribbons/flakes on SiO<sub>2</sub>/Si substrates by a facile chemical vapor deposition (CVD) approach is presented. The atomic structure and high crystalline quality of CVD-derived PdS crystals are shown by scanning transmission electron microscopy. The nonlinear saturable absorption and absorption enhancement are revealed by using ultrafast optical pump-probe spectroscopy, and the photocarrier dynamics present the hot phonon bottleneck and Auger recombination effects. Additionally, the Raman vibration modes display the polarization-dependent properties verified by angle-resolved polarized Raman spectroscopy. Importantly, the photodetector based on PdS ribbon demonstrates a decent photoresponsivity of ≈7.7 × 10<sup>3</sup> A W<sup>−1</sup>. These results provide an effective way to form thin nonlayered PdS with potential applications in the field of photodetection.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 33","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401624","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlayered palladium sulfide (PdS) is of interest due to its rich physical properties and promising applications in optoelectronic devices. However, the growth of thin nonlayered PdS remains challenging because of its intrinsic 3D lattice structure. Here, the first demonstration of the direct synthesis of thin rectangular PdS ribbons/flakes on SiO2/Si substrates by a facile chemical vapor deposition (CVD) approach is presented. The atomic structure and high crystalline quality of CVD-derived PdS crystals are shown by scanning transmission electron microscopy. The nonlinear saturable absorption and absorption enhancement are revealed by using ultrafast optical pump-probe spectroscopy, and the photocarrier dynamics present the hot phonon bottleneck and Auger recombination effects. Additionally, the Raman vibration modes display the polarization-dependent properties verified by angle-resolved polarized Raman spectroscopy. Importantly, the photodetector based on PdS ribbon demonstrates a decent photoresponsivity of ≈7.7 × 103 A W−1. These results provide an effective way to form thin nonlayered PdS with potential applications in the field of photodetection.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.